The Toll pathway inhibits tissue growth and regulates cell fitness in an infection-dependent manner

Federico Germani¹, Daniel Hain², Denise Sternlicht¹, Eduardo Moreno²,³* and Konrad Basler¹*

¹Institute of Molecular Life Sciences, University of Zurich, Switzerland.
²Institute of Cell Biology, University of Bern, Switzerland.
³Champalimaud Research Center Lisbon, Portugal.
† These authors contributed equally
*correspondence to konrad.basler@uzh.ch or to eduardo.moreno@fchampalimaud.org

Abstract:

The Toll pathway regulates the cellular response to infection via the transcriptional upregulation of antimicrobial peptides. In Drosophila, apart from its role in innate immunity, this pathway has also been reported to be important for the elimination of loser cells in a process referred to as cell competition, which can be locally triggered by secreted factors released from winner cells. In this work we provide evidence that the inhibition of Toll signaling not only increases the fitness of loser cells, but also bestows a clonal growth advantage on wild-type cells. We further demonstrate that this growth advantage depends on basal infection levels since it is no longer present under axenic conditions but exacerbated upon intense pathogen exposure. Thus, the Toll pathway functions as a fine-tuned pro-apoptotic and anti-proliferative regulator, underlining the existence of a trade-off between innate immunity and growth during development.

Main Text:

The Toll pathway was first identified as a master regulator of dorso-ventral patterning in the Drosophila embryo (1) and subsequently shown to serve as the core mechanism for the innate immune response to Gram positive bacteria, fungi, viruses and cancer cells in both Drosophila and mammals (2-7). In Drosophila the Toll pathway is activated upon infection via the proteolytic cleavage of the cytokine Spätzle (8, 9), which triggers a signal transduction cascade that leads to the nuclear translocation of the NFκB transcription factors Dorsal and Dif (11). This ancient and highly conserved cascade starts with the binding of cleaved Spätzle to one of the nine Toll receptors, which in turn associates via its cytoplasmic domain with Myd88, Tube and Pelle. The kinase Pelle then phosphorylates Cactus (IκB), targeting it for proteosomal degradation (12-14). Since Cactus normally retains Dorsal and Dif in the cytoplasm, its degradation causes their release, nuclear translocation and expression of antimicrobial peptides (AMPs), molecules that specifically fight infection (15).

The Toll pathway has more recently been proposed to mediate the elimination of unfit cells (16) from tissues via a process known in Drosophila and mammals as cell competition (17). Weakened, damaged cells, referred to as “losers” in the context of
cell competition, are detected and eliminated from developing tissues via
delamination and apoptosis when surrounded by fitter cells, generally referred to as
“winners”. Two well studied paradigms of cell competition are: Minute competition,
where cells lacking one allele of a ribosomal protein gene are surrounded by wild-
type cells (17), and super-competition, where wild-type cells are surrounded by cells
expressing elevated levels of Myc (18, 19). Overexpression (OE) of Cactus in loser
cells rescues cell competition-driven elimination of both RpLI4+/ Minute clones and
of wild-type clones surrounded by cells with an extra copy of the dMyc gene (16). It
has recently been proposed that dMyc-expressing winner cells release Spätzle and the
serine proteases required for its activation, thereby enhancing Toll-dependent
apoptosis in neighboring loser cells (20).

Unexpectedly, we observed that inhibition of the Toll pathway by Cactus OE not only
rescued the elimination of loser cells (Figure 1-figure supplement 1), but also
conferring a clonal growth advantage to wild-type cells (Figure 1). Moreover, the
activation of the pathway via Toll-7 or Pelle overexpression caused a reduction of
clonal growth: such clones assumed a rounded-up shape, suggesting that cells were
undergoing apoptosis (Figure 1A-1A’s”, quantified in 1B). Additional regimes of
clonal induction (Figure 1C-D) and the use of other pathway components (Figure 1 –
supplement 2, 3) corroborated these results: also overexpression of Dorsal, Tollo and
Toll-2 led to a reduction of clonal growth, as well as the overexpression of Toll-10b,
the constitutive active form of the Toll-1 receptor. Next, we checked whether the
reduction of growth observed upon Toll pathway activation was due to increased
apoptosis. Dcp-1 staining revealed that both Toll-7 and Pelle OE clones are highly
apoptotic, round up and are finally pushed out of the tissue via delamination (Figure 1
– supplement 4). We further overexpressed Toll-7 and Cactus in the posterior
compartment of the wing disc. Toll-7 OE massively induced apoptosis, whereas
Cactus OE caused a reduction of apoptosis when compared to the wild-type anterior
compartment (Figure 1 – supplement 5).

In order to determine whether the Toll pathway regulates growth systemically, we
analyzed entire animals or whole appendages with altered pathway activity (Figure 1 -
supplement 6). However, no major size differences could be observed, indicating that
Toll signaling influences cellular fitness only in situations where cell populations that
differ in their ability to respond to infection are intermingled. A corollary of this
hypothesis would be that wild-type cells must exhibit higher pathway activity
compared to Cactus OE cells, in which the pathway is effectively blocked. Since Toll
signaling is a key mediator for the immune response, it is possible that a subliminal
pathway activity level stems from chronic exposure to pathogens, due to typically
unsterile working conditions. To test this, we grew animals in a fully axenic
environment – i.e. in the complete absence of pathogens - and in a highly infected
environment – i.e. by adding Aspergillus niger to the culture medium (Figure 2 –
supplement 1). This fungus was chosen because of its pathogenic activity that
shortens the life span of flies (Figure 2 – supplement 2).

As expected, in a Minute cell competition scenario, the inhibition of the Toll pathway
via overexpression of Cactus in loser cells strongly rescued their elimination in both
normal and infected conditions (Figure 2A’-A’’, B’-B’’, quantified in 2E, F).
However, no rescue of cell competition-driven elimination of loser cells was observed
when animals were grown under axenic conditions (Figure 2A, B, quantified in 2E,
F). Indeed, under axenic conditions Cactus OE Minute loser clones were eliminated even more efficiently than control Minute clones (Figure 2A, B, C-D’, quantified in 2E-F). A similar behavior was observed in the dMyc super-competition context, where Cactus OE rescued loser cell elimination upon infection but not under axenic conditions (Figure 2G). Thus the involvement of the Toll pathway in cell competition depends on the presence of pathogens in the environment in which larvae develop.

The clonal growth influence by Cactus OE in wild-type cells also depends on the state of infection. Under extra-pathogen conditions Cactus-dependent overgrowth was further enhanced, but suppressed under axenic conditions (Figure 3A-B'', quantified in 3D). The opposite effect could be observed when clones overexpress Toll-7: clones were rare and small in both normal and axenic conditions, but grew almost as well as control LacZ clones upon highly infected conditions (Figure 3C-C'', quantified in 3D). Thus the clonal disadvantage caused by Toll pathway activation inversely correlates with the level of infection, substantially diminishing with increasing degrees of infection. Finally, we asked whether the partially lethal effects of ubiquitous Toll-7 or Cactus OE (Figure 1 – supplement 2) depend on the pathogen load (infection or axenic conditions). We found that pathway activation-induced lethality was ameliorated under conditions of extra-infection, while pathway suppression-induced lethality was rescued by axenic conditions (Figure 3 – supplement 1).

In conclusion, our findings reveal that in a non-sterile environment cells deficient for the Toll-mediated immune response grow better than immunocompetent wild-type cells. This growth difference depends on the level of infection: it is null in axenic conditions and enhanced by addition of pathogens. Most likely, therefore, it is driven by different levels of Toll pathway activity. Importantly though, these different levels must occur in cell populations that cohabitate in the same tissue, as we were not able to detect growth effects in organs entirely programmed to exhibit elevated or reduced Toll signaling. Our findings can therefore be explained by a model (Figure 4) in which cells with lower Toll pathway activity profit from, and grow faster than, nearby cells with higher activity. Conversely, cell clones with higher Toll signaling levels (e.g. by overexpressing Toll receptors) are eliminated from the tissue via apoptosis and delamination when surrounded by cells with lower levels (Figure 4 – supplement 1).

Our experiments indirectly suggest that the local effects on clonal growth depend on a systemic response to infection. Likely therefore, the active form of Spätzle is produced in distant organs and reaches the wing disc through the haemolymph. However, it has recently been proposed that wing discs locally produce Spätzle and the serine proteases responsible for its activation (20). Via an increased secretion of these factors, Myc OE cells may be able to induce Toll-dependent apoptosis in neighboring loser cells (20). It is therefore possible that local and systemic sources of Spätzle co-exist. Since infection is the initial trigger for the aforementioned effects in cell competition and clonal growth, it will be interesting to investigate whether the local production of Spätzle and serine proteases depends on a systemic response to infection.

Our findings also underline the important awareness that we are working in non-anthropic environments. Experimental results can dramatically differ because of complex and often unexpected consequences of immune responses. This aspect has
been emphasized with experiments conducted in mice in recent years (21, 22, 23). Here we show that analogous issues can affect *Drosophila* research.

Finally, our results also reveal a phenotypic connection between the two fundamental processes of innate immunity and cell growth at the cellular level. The previous findings that Dorsal induces the transcription of the pro-apoptotic gene *rpr* (16) and that the *Drosophila* Toll pathway cross-talks with the growth controlling Hippo signaling pathway (24) also suggest a potential mechanistic connection for our observations. The evolutionary implications can be viewed in the light of the life history theory, which seeks to explain natural selection on the basic assumption that environmental resources are limited and organisms establish trade-offs between processes such as reproduction, growth and immunity (25, 26). Allocating resources into a costly trait like immunity (27, 28) occurs at the expense of other important processes, such as organismal growth. In agreement with this theory, we experimentally show that a cellular trade-off exists between innate immunity and clonal growth during development.

Materials and Methods

Drosophila stocks and care:

Flies were raised at 25°C on a cornmeal food. The following lines were used in this study: *hsp-Flp, Act>CD2>Gal4 UAS-GFP* flies were crossed with several *UAS-ORF* lines (29) (*UAS-ORF* constructs are inserted in position 86Fb): *UAS-LacZ, UAS-Cactus, UAS-Toll-7, UAS-Pelle, UAS-Dorsal RNAi* (VDRC), *UAS-Dorsal, UAS-Toll-10b, UAS-Tollo, UAS-Toll-2* to induce clones in a wild-type background. *hsp-Flp UAS-GFP, Rpl14 SalE>Rpl14>Gal4* and *hsp-Flp, tub>dmyc>Gal4 UAS-GFP* flies were used to generate loser clones in combination with *UAS-LacZ, UAS-Cactus* and *UAS-RpL14*. To measure the dry weight of flies, *Act5c-Gal4/TM6b* flies were crossed with *UAS-LacZ, UAS-Cactus, UAS-Toll-10b-FLAG*. They were further crossed with *UAS-Cg1315 RNAi* (used as a control for RNAi constructs) (gift of H. Stocker), and with the VDRC line *UAS-Toll-3 RNAi*. *y w* flies were compared with *TollO* (Bloomington n.1533) and *Toll-9* (Bloomington n.209) mutant lines. *nub-Gal4/CyO* flies were crossed with *UAS-LacZ and UAS-Cactus* flies for adult wing size measurements. For eye size measurements, *ey-Flp, Act>CD2>Gal4* flies were crossed with *UAS-LacZ, UAS-Cactus, UAS-Toll-7 and UAS-Pelle* flies. For viability assays *Act5c-Gal4/TM6b* flies were crossed with *UAS-LacZ, UAS-Cactus, UAS-Pelle, UAS-Toll-9, UAS-Dorsal, UAS-Dif, UAS-Toll-2, UAS-Tollo, UAS-Cg1315* and with VDRC lines *UAS-Cactus RNAi, UAS-Dorsal RNAi, UAS-Dif RNAi, UAS-Toll-3 RNAi, UAS-Toll-9 RNAi*. *y w* flies were used for survival analysis and were infected 2 days after eclosion.

Heat shock induction of loser clones and clones in a wild-type background:

In the *minute* cell competition assay, a line carried a *minute* mutation in *RpL14* together with the *SalE>Rpl14>Gal4* Flp-out transgene, with *SalE* being a driver expressed in the wing pouch, and *UAS-GFP*. Induction of *RpL4^{0/+}* clones was induced via heat shock-induced Flp activity and consequent excision of the Flp-out cassette. Heat shock was induced 48 hours After Egg Deposition (AED) for 15 min. Flies were
allowed to lay eggs for 8 hours. The hsp-Flp, Act>CD2>Gal4 UAS-GFP line was used for the induction of clones in a wild-type background. The Flp-out cassette was excised 72 h AED for 10 min by heat shock induced recombination or, alternatively, 24-36 h AED for 15 min or 48 h AED for 8 min, or 72 h AED for 6 min, as indicated in Fig. 1.

Imaging, image analysis and quantification:

Wing discs were imaged using a Leica LSM710 (25x oil or 63x oil for close-ups) confocal microscope. GFP+ and GFP areas were measured using the automatic threshold and the polygon selection tool in FIJI. In the case of the minute competition assay, clones were measured only in the wing pouch, in correspondence of the SalE expression domain. Statistical analyses were performed in Graphpad Prism 7 or Microsoft Excel. Depending on the distribution of data, t-test or Mann-Whitney tests were used, unless differently indicated.

Adult eye and wing pictures were taken using an AXIO Zoom V16 Zeiss Microscope (56x magnification). Eye and wing surfaces were measured using FIJI’s polygon tool.

Immunohistochemistry:

Larvae were dissected and inverted in Ringer solution, fixed in 4% PFA for 20 min at Room Temperature (RT) with rotation, washed with PBS. To label DNA, samples were stained for 10 min in 2% HINGS with 1:100 DAPI at RT with rotation and then washed in PBT/Na-Acid and PBS. For antibody stainings, samples were blocked with 2% HINGS for 30 min at RT with rotation. To detect apoptosis, samples were stained ON at 4°C with rabbit anti-cleaved-Dcp-1 primary antibody diluted 1:100 in 2% HINGS. Phospho-Histon e-3 (PH3) staining was performed to detect mitotic cells. For this purpose, samples were stained ON at 4°C with rabbit anti-PH3 diluted 1:400 in 2% HINGS. Secondary antibodies were Alexa-conjugated anti-rabbit. After final washing steps in PBT/Na-Acid and PBS, wing discs were dissected in Ringer solution and mounted on slides in a drop of Vectashield Mounting Medium.

Axenic and infected conditions:

Axenic conditions. Freshly prepared cornmeal food was autoclaved together with glass vials and stoppers. Food was cooled down to about 60°C and a mix of antibiotics and antifungal agents was added to the liquid food: Pen/Strep (1.7 ml per 100 ml of food), Ampicillin (1:500), Kanamycin (1:1000), Chloramphenicol (1:1000), Antimycotic Nipagin (0.15 g per 100 ml). About 30-50 virgin females were crossed with 20-40 males in cages and eggs were collected on sterile agar plates. Eggs were collected with sterile water, embryos were decoryonated in 10% bleach for 5 min and washed through a sieve. Embryos were then transferred into axenic food using a sterile brush. Vials were kept in a sterile incubator at 25°C.

Infected conditions. Aspergillus niger fungi were grown on sterile potato agar plates. For 1 liter of agar, 39 g of potato agar powder were diluted in sterile water. To avoid bacterial growth, 17 ml of Pen/Strep, 2 ml of Ampicillin, 1 ml of Kanamycin and 1 ml of Chloramphenicol were added to the mixture. Food was covered with a layer of agar covered with A.niger. Crosses were performed in “infected tubes” and larvae were raised at 25°C.
Dry weight measurements:

Flies were collected 14 days AED (2-3 days old, not virgins) while asleep in Eppendorf tubes and cooked for 1 hour at 95°C in an Eppendorf thermomixer compact. Dry weight was measured using a Mettler Toledo MX5 balance.

Adult eye and wing size estimation:

For eye size measurements, flies were selected and frozen for 20 min at -20°C. They were subsequently laid onto an agar plate with one eye oriented upwards. For wing size measurements, wings were removed with forceps from flies 12 days and placed them onto a slide in a drop of Euparal mounting medium.

Survival analysis

After eclosion from pupal stage, 20 to 30 flies were infected with *E. coli* or *Aspergillus niger* or with PBS, the last serving as a non-infectious control solution. Flies were anesthetized with CO₂ and gently picked into the sternopleuron using a sterile needle (0.5x1.6mm), which has been dipped into the respective solutions. Flies were then transferred into vials containing fresh food. *E.coli* bacteria were grown ON at 37°C by inoculating 5 ml of liquid microbial growth medium with 5 μl of bacteria. 1 ml of the suspension was centrifuged at maximum speed for 3 minutes. The supernatant was discarded. For the infection the needle was dipped into the pellet. *A. niger* spores were collected 5 to 7 days after plating. Spores were collected with sterile water and separated from the hyphal bodies using cotton wool filters plugged into Pasteur pipettes. The suspension was filtered 5 times, collected in an Eppendorf tube and centrifuged at maximum speed for 3 minutes. The supernatant was discarded and the procedure was repeated. The pellet of two filtration passages was resuspended in 50 μl of sterile water.

The number of living and dead flies was recorded every day. Flies were transferred to fresh food every 3 days.

Acknowledgments:

We thank Hugo Stocker, Christian Lehner, George Hausmann and Claudio Cantu’ for fruitful discussion and support. F.G. has been partially supported by the Candoc Forschungskredit Research Grant. EM and DH were supported by SNF and ERC grants.

Competing interests:

The authors declare no competing interest.

References:

Fig. 1. The Toll pathway negatively regulates clonal growth. When compared to LacZ overexpressing (OE) clones, here used as a control (A), clonal inhibition of the Toll pathway via the overexpression of the NFkB inhibitor Cactus (IkB) causes overgrowth (A'). Pathway activation via the overexpression of Toll-7 (A'') or Pelle (A''') causes growth reduction. Clones are induced 72 hours AED with a 10' heat shock. Data are quantified as the percentage of the normalized ratio between GFP+ and GFP− tissue areas in the wing pouch (B). Similarly, Cactus OE clones grow larger when the heat shock is performed at different developmental stages and for different durations, respectively for 6' 48 hours AED (C) and for 15’ 30 hours AED (D). ***P<0.001, **P<0.01, *P<0.05, t-test. Bars represent SEM.
Fig. 1 – supplement 1. Toll pathway inhibition rescues cell competition-driven elimination of minute clones. Clones lacking a copy of a ribosomal protein gene, here RpL14, are eliminated from the tissue (A, A’) via the induction of apoptosis, as shown with a Dcp-1 staining (B, B’). The overexpression in these clones of the Toll pathway inhibitor Cactus/IkB rescues their elimination (C, C’), similarly to the rescue generated by overexpressing RpL14, used here as a positive control (D, D’). Normalized number of clones (E) and the percentage of the normalized ratio between GFP+ and GFP− tissue areas in the wing pouch (F) are quantified. *P<0.05, Mann-Whitney test. Bars represent SEM.
Figure 1 – supplement 2. Viability assay identifies lethal and partially lethal Toll pathway alterations. Act5c-Gal4/TM6b female flies are crossed with males carrying UAS-X either balanced or not. The progeny is either wild-type or TM6b (Tubby larvae and pupae, Humeral adults). Phenotypes are counted and impact of different Toll pathway modifications is assessed by comparison with UAS-LacZ for overexpression constructs or with UAS-Cg1315 for RNAi constructs (A). Viability assay in larvae. Overexpression of Pelle is lethal, whereas Cactus and Toll-7 OE is partially lethal. No effect on viability is obtained with other modifications (B-B’). Viability assay in pupae. Pelle OE is lethal; overexpression of Cactus, Toll-7 and Toll-2 is partially
lethal. Knock-down of Cactus, Dorsal, Dif and Toll-3 RNAi is partially lethal. No
effect is obtained with Toll-9 OE (C-C'). Viability assay in adults. Overexpression of
Pelle, Toll-2 and Tollo is lethal. Knock-down of Dorsal is lethal. Partial lethality is
obtained by overexpressing Cactus, Toll-7, Dorsal and Dif or by knocking-down
Cactus, Dif and Toll-3. No effect is observed when Toll-9 is either overexpressed or
down-regulated (D-D'). ***P<0.001, **P<0.01, chi-square test.
Figure 1 – supplement 3.

The Toll pathway negatively regulates growth. When compared to LacZ OE clones, here used as a control (A), clonal inhibition of the Toll pathway via the down-regulation of the NFκB transcription factor Dorsal has no effect on growth, but clones appear more fragmented such that they possess a larger surface of contact with surrounding tissues (A’). Pathway activation via the overexpression of either Dorsal (A’’), the constitutively active form of the Toll-1 receptor (Toll-10b) (A’’’), Toll (A’’’’’) or Toll-2 (A’’’’’) causes growth reduction and rounded-up shapes of clones. Clones are induced 72 hours AED with a 10’ heat shock. Data are quantified as the percentage of the normalized ratio between GFP* and GFP+ tissue areas in the wing pouch (B). ***P<0.001, t-test. Bars represent SEM.
Figure 1 – supplement 4. The Toll pathway induces delamination and apoptosis.

Toll-7 overexpressing clones, used as an example, round-up and are highly apoptotic, as observed with anti-Dcp-1 staining (A-A’). Pelle overexpressing clones, e.g., seen in the DAPI channel, are pushed out of the tissue at the basal surface of the disc and form a visible apical hole in the epithelium (B). Dorsal overexpressing clones are delaminated from the tissue at the basal surface (C). Heat shock was performed 72 hours AED for 6 minutes.
Figure 1 – supplement 5

Compartmentally induced Toll pathway causes apoptosis. Cactus and Toll-7 are overexpressed in the posterior compartment of wing discs (en-Gal4). Cactus OE compartments show less apoptosis when compared to control anterior compartments (A-A’, quantified in D). Toll-7 compartments are massively apoptotic, when compared to wild-type anterior compartments (B-B’). Data are quantified as follows: the ratio between the number of apoptotic cells in the posterior compartment and the area of the compartment is compared, and normalized to, the ratio between the number of apoptotic cells in the pouch and the area of the pouch. (D). No difference is detected in the number of proliferative cells (pH3 staining) across compartments. Data are quantified by calculating the percentage, in each condition, of pH3 spots in the posterior compartment normalized for the area of the compartment (C). Toll-7 compartments are smaller than wild-type compartments, whereas Cactus compartments show a similar size when compared to their wild-type counterparts. Data are quantified by calculating the ratio between compartments of each condition and the area of the wing pouch, and normalized to the ratio between the area of wild-type compartments and the area of the wing pouch (E). Apoptotic spots, pH3 spots and compartment areas are calculated using FIJI. ***P<0.001, **P<0.01, t-test (paired t-test in (D)). Bars represent SEM.
Figure 1 – supplement 6
Figure 1 – supplement 6. Toll pathway modifications have no or little effect on organismal and organ growth. Dry weight of Cactus and Toll-10b overexpressing female flies (Actin driver) does not differ from LacZ control flies (A). Dry weight of Dif and Toll-3 knock-down flies does not differ from Cg1315 RNAi control flies (B). Tollo\(^{-}\) and Toll9\(^{-}\) female flies have a slightly reduced weight when compared with y w flies (C). Similarly, male flies overexpressing Cactus and Toll-10 or downregulating Dif and Toll-3 do not show effects on dry weight when compared to LacZ and Cg1315 RNAi flies (D-E). Tollo\(^{-}\) and Toll9\(^{-}\) male flies have a slightly increased weight when compared with y w flies (F). No effect on wing size is detected when Cactus is overexpressed using nub-Gal4, compared to LacZ OE animals (G-H). Wings are slightly bigger when engrailed is used as a Gal4 driver to drive Cactus overexpression (I). No effect is detected on eye size when Cactus is overexpressed and a small reduction in size is seen when Toll-7 is overexpressed. Pelle OE is lethal and pharate eyes appear smaller but fully developed (J-K). ***P<0.001, **P<0.01, *P<0.05, t-test. Bars represent SEM.
Figure 2. Toll pathway inhibition rescues cell competition-driven elimination of loser clones in an infection-dependent manner. Minute clones, which lack a functional copy of the \(RpL14 \) gene, are eliminated via cell competition under axenic (A), normal (A'), and infected conditions (A''). LacZ overexpression in loser cells is used as a negative control. Toll pathway inhibition via Cactus OE fails to rescue cell competition-driven elimination of minute clones under axenic conditions (B), whereas elimination is rescued under both normal (B') and infected (B'') conditions. Loser clones are highly apoptotic, as shown with a Dcp-1 staining (C, C'). and Cactus OE escaper clones under axenic conditions are extremely fragmented and apoptotic (Dcp-1 staining, D, D') Data are quantified by scoring the number of clones in the wing pouch (E), and by calculating the percentage of the normalized ratio between GFP\(^+\) and GFP\(^-\) tissue areas in the wing pouch (F). Similarly, the elimination of loser clones with a single copy of dMyc in a background with two copies of dMyc is rescued specifically under normal or, even more efficiently, under infected conditions, but not under axenic conditions, as quantified in (G). ***P<0.001, **P<0.01, *P<0.05, n.s. not significant, Mann-Whitney test. Bars represent SEM.
Figure 2 – supplement 1

Methods to grow axenic or infected animals. In order to develop axenic animals, crosses were set up in cages and eggs were collected onto agar plates (A). Embryos were dechorionated in 10% bleach (A'), washed and transferred into tubes containing axenic food (A''). Tubes and plugs were previously autoclaved. Larvae were grown at 25°C in a sterile incubator (A'''). Food was prepared with a cocktail of antibiotics and antifungal agents, as listed in (A''''). In order to develop infected animals, *A. niger* was cultivated onto potato agar plates (B) and then added to the food, where crosses were set up and eggs collected (B'). Food was prepared with a mix of antibiotics to avoid bacterial growth, listed in (B'').
Flies infected with *A. niger* have a reduced life span. Flies are infected with either a PBS control solution, a *E. coli* solution or a solution of *A. niger*. Life span was measured. Female flies infected with *E. coli* and, to a larger extent, flies infected with fungi, die earlier than control animals (A). A similar trend is observed for males (B).
Figure 3. The Toll pathway negatively regulates clonal growth in an infection-dependent manner. Under normal laboratory conditions, when compared to LacZ OE clones (A’), clonal inhibition of the Toll pathway with Cactus OE causes overgrowth in a wild-type background (B’). When the pathway is activated via the overexpression of Toll-7, clones are instead reduced in size (C’). The growth advantage provided by the inhibition of the pathway is further enlarged under infected conditions (B” compared to A”). Inhibition of the pathway under axenic conditions does not provide a growth advantage over the surrounding cells (B compared to A). On the contrary, pathway activation enhances the growth-defective phenotype in axenic conditions (C) and the effect is no longer evident when larvae develop under infected conditions (C”). Data are quantified in (D) as the percentage of the normalized ratio between GFP” and GFP tissue areas in the wing pouch. ***P<0.001, *P<0.05, Mann-Whitney test. Bars represent SEM.
Figure 3 – supplement 1. Pathway activation-induced lethality is partially rescued under infected conditions and pathway suppression-induced lethality is rescued under axenic conditions. Lethality is scored as a normalized percentage of non-balanced individuals, since progeny can either inherit either the Act-Gal4 that drives the overexpression of our genes of interest or a TM6b balancer chromosome. In
larvae and in normal conditions Cactus and Toll-7 overexpression is partially lethal. Under axenic conditions Cactus OE fully rescues larval lethality, whereas Toll-7 OE lethality is further increased. Infected larvae that overexpress Toll-7 rescue lethality observed under normal and, even more, axenic conditions (A). Lethality trend is shown in (A’). In pupae, similarly to larvae, Cactus OE shows no effect on viability, whereas its impact increases with increased infection. The opposite can be seen with Toll-7 OE pupae (B-B’). In adults the situation resembles the one described for larvae and pupae, although Toll-7 OE is lethal under axenic conditions and no rescue of the partial lethality seen under normal conditions is observed under infected conditions (C-C’). ***P<0.001, **P<0.01, chi-square test.
Fig. 4

Fig. 4. Infection-dependent role of the Toll pathway in cell growth (pathway inhibition scenario). The cartoon shows wild-type cells, colored in violet, that surround red-Cactus overexpressing cells. Toll receptors are present on cell membranes. Spätzle cytokines are drawn as blue circles, Cactus as red circles and NFkB as green circles. Infection with *A. niger* is depicted with black symbols. Nuclear shapes indicate either a dividing or a static cell (A and B). Under axenic condition, no pathogens are present in the extracellular environment and, independently of the amount of IkB inhibitor in the cytoplasm, the NFkB transcription factors are unable to translocate to the nucleus. The outcome is a leveled and uniform growth between wild-type and Cactus OE cells (A). When cells are naturally or artificially exposed to infectious agents, Toll pathway activation in wild-type cells causes NFkB nuclear translocation. On the contrary, Cactus OE cells remain unresponsive, with NFkB confined to the cytoplasm. This generates a strong growth advantage over the surrounding wild-type cells (B). After developmental time, indicated in the cartoon with a clock, clones of red Cactus OE cells are growing over a larger percentage of the tissue upon infection (A’ and B’). The source of active Spätzle may be both systemic, as suggested by our experiments, and local (20).
Figure 4 – supplement 1

Infection-dependent role of the Toll pathway in cell growth (pathway activation scenario). The cartoon shows wild-type cells, colored in violet, that surround orange Toll-7 overexpressing cells, as indicated by the increased number of receptors on the surface of the cells. Spätzle cytokines are drawn as blue circles, Cactus as red circles and NFkB as green circles. Infection with *A. niger* is depicted with black symbols. Nuclear shapes indicate either a dividing or a static cell (A and B). Under either axenic or normal conditions, no or “natural” amounts of pathogens are present in the environment. Cells with higher numbers of receptors have presumably higher chances to sense the infection via Spätzle and to therefore activate the Toll pathway, leading to cell death and delamination. Surrounding wild-type cells therefore gain a growth advantage over Toll overexpressing cells (A). When a large amount of pathogen is present, activation of the pathway presumably reaches saturation levels in all cells, irrespectively of the number of exposed receptors. Cell growth is therefore leveled among wild-type and Toll overexpressing cells (B). After developmental time, indicated in the cartoon with a clock, clones of orange Toll OE cells are growing over a larger percentage of the tissue upon infection (A’ and B’). The source of active Spätzle may be both systemic, as suggested by our experiments, and local (20).