Figures and figure supplements

Arterial smooth muscle cell PKD2 (TRPP1) channels regulate systemic blood pressure

Simon Bulley et al
Figure 1. Activation of Cre recombinase abolishes PKD2 in arterial myocytes of \(Pkd2^{fl/fl} \):myh11-cre/ERT2 mice. (A) RT-PCR showing the absence of PKD2 transcript in isolated myocytes from tamoxifen-treated \(Pkd2^{fl/fl} \):myh11-cre/ERT2 mice. (B) Western blots illustrating the effect of tamoxifen-treatment in \(Pkd2^{fl/fl} \) and \(Pkd2^{fl/fl} \):myh11-cre/ERT2 mice on PKD2, CaV1.2L (full-length CaV1.2) and CaV1.2S (short CaV1.2) proteins in mesenteric and hindlimb arteries. (C) Mean data for proteins in mesenteric arteries of tamoxifen-treated \(Pkd2^{fl/fl} \):myh11-cre/ERT2 mice when compared to those in tamoxifen-treated \(Pkd2^{fl/fl} \) mice. \(n = 4–7 \). * indicates \(p<0.05 \) versus \(Pkd2^{fl/fl} \). (D) En-face immunofluorescence imaging illustrating that PKD2 protein (red, Alexa Fluor 555) is abolished in myocytes of mesenteric and hindlimb arteries in tamoxifen-treated \(Pkd2^{fl/fl} \):myh11-cre/ERT2 mice (representative of 6 mesenteric and six hindlimb arteries). In contrast, PKD2 protein in endothelial cells is unaltered. Nuclear staining (DAPI) is also shown. Scale bars = 20 \(\mu m \). (E) Confocal and DIC images illustrating that PKD2 protein (Alexa Fluor 555) is abolished in isolated mesenteric artery myocytes of tamoxifen-treated \(Pkd2^{fl/fl} \):myh11-cre/ERT2 mice (representative data from 5 \(Pkd2^{fl/fl} \) and 5 \(Pkd2^{fl/fl} \):myh11-cre/ERT2 mice). Scale bars = 10 \(\mu m \). DOI: https://doi.org/10.7554/eLife.42628.002
Figure 1—figure supplement 1. Genotyping of mouse lines. Ethidium bromide gel illustrating PCR products in vasculature of C57BL/6J (WT) mice and tamoxifen-treated Pkd2^{fl/fl} and Pkd2^{fl/fl}:myh11cre/ERT2 mice. DOI: https://doi.org/10.7554/eLife.42628.003
Figure 1—figure supplement 2. PKD2 protein is lower in aorta and mesenteric and hindlimb arteries from tamoxifen-treated Pkd2^{fl/fl}:myh11-cre/ERT2 mice. (A) Western blots illustrating PKD2 protein was lower in mesenteric arteries of tamoxifen-treated Pkd2^{fl/fl}:myh11-cre/ERT2 mice, whereas other proteins were similar. (B) Mean data for proteins in hindlimb arteries of Pkd2 smKO mice (n = 4–6). (C) Western blots of proteins in aorta. Cav1.2L, full-length Cav1.2; Cav1.2S, short Cav1.2. (D) Mean data from aorta (n = 4). * indicates p<0.05 versus Pkd2^{fl/fl}. DOI: https://doi.org/10.7554/eLife.42628.004
Figure 1—figure supplement 3. Several proteins that regulate arterial contractility are unchanged in tamoxifen-treated Pkd2fl/fl:myh11-cre/ERT2 mice. (A) Western blots illustrating Angiotensin II type one receptor (AT1R), Piezo1, α1-adrenergic receptor A (α1A), α1-adrenergic receptor B (α1B), α1-adrenergic receptor D (α1D) and G protein-coupled receptor 68 (GPR68) protein levels in mesenteric and hindlimb arteries of Pkd2fl/fl and Pkd2fl/fl:myh11-cre/ERT2 mice. (B) Mean data from mesenteric and hindlimb arteries (n = 4 per group).
DOI: https://doi.org/10.7554/eLife.42628.005
Figure 2. *Pkd2* smKO mice are hypotensive with normal cardiac function and renal histology. (A) Original telemetric blood pressure recordings from *Pkd2* smKO and *Pkd2*fl/fl mice. (B) Mean systolic and diastolic blood pressures in *Pkd2*fl/fl (n = 11) and *Pkd2* smKO (n = 12) mice. * indicates p<0.05 versus *Pkd2*fl/fl. (C) Mean arterial blood pressures (MAP) in *Pkd2*fl/fl (n = 11) and *Pkd2* smKO (n = 12) mice during day and night (gray) cycles. ZT: Zeitgeber Time. * indicates p<0.05 versus *Pkd2*fl/fl for all data points. (D) Mean echocardiography data. Cardiac output (CO), fractional shortening (FS), ejection fraction (EF) and heart rate (HR). (*Pkd2*fl/fl, n = 5; *Pkd2* smKO mice, n = 4). (E) Representative images of H and E stained kidney cortex used for histological assessment (n = 3 mice used for each group).

DOI: https://doi.org/10.7554/eLife.42628.006
Figure 2—figure supplement 1. Lower blood pressure is sustained in Pkd2 smKO mice. (A) Mean arterial blood pressure (MAP) in Pkd2 smKO and Pkd2fl/fl mice (n = 6 per group). * indicates p<0.05 versus Pkd2fl/fl. (B) Mean data of locomotor activity, n = 6 per group.
DOI: https://doi.org/10.7554/eLife.42628.007
Figure 3. Pressure-induced vasoconstriction is attenuated in Pkd2 smKO mouse hindlimb arteries. (A) Representative traces illustrating diameter responses to intravascular pressure in gastrocnemius arteries of Pkd2^{fl/fl} and Pkd2 smKO mice. (B) Mean data for myogenic tone in gastrocnemius arteries (Pkd2^{fl/fl}, n = 5; Pkd2 smKO, n = 6). * indicates p<0.05 versus Pkd2^{fl/fl}. (C) Representative traces illustrating hindlimb perfusion pressure in response to increasing flow. (D) Mean data for hindlimb perfusion pressure (Pkd2^{fl/fl}, n = 6; Pkd2 smKO, n = 4). * indicates p<0.05 versus Pkd2^{fl/fl}.

DOI: https://doi.org/10.7554/eLife.42628.009
Figure 3—figure supplement 1. Myocyte PKD2 knockout does not alter phenylephrine or angiotensin II-induced vasoconstriction in hindlimb arteries. (A) Mean passive diameter at 80 mmHg of first-order gastrocnemius arteries (G) and third-, fourth- and fifth-order mesenteric arteries (M) (Pkd2^{fl/fl}: G, n = 5; M^{3rd}n = 4; M^{4th}n = 5; M^{5th}n = 5 and Pkd2 smKO: G, n = 5; M3rdn = 7; M4thn = 4; M5thn = 5). (B) Mean data for 60 mM K⁺-induced constriction in pressurized (100 mmHg) gastrocnemius arteries from Pkd2^{fl/fl} (n = 4) and Pkd2 smKO (n = 4) mice. * indicates p<0.05 versus Pkd2^{fl/fl}. (C) Mean data of phenylephrine-induced constriction in pressurized gastrocnemius arteries (Pkd2^{fl/fl} n = 4, Pkd2 smKO n = 5). (D) Mean data of angiotensin II-induced constriction in gastrocnemius arteries pressurized to 100 mmHg (Pkd2^{fl/fl}, n = 5 and Pkd2 smKO, n = 5–6). (E) Mean data of phenylephrine-induced pressure responses in intact hindlimb (Pkd2^{fl/fl}, n = 11–13 and Pkd2 smKO, n = 8–9).

DOI: https://doi.org/10.7554/eLife.42628.010
Figure 4. PKD2 channels contribute to pressure-induced hindlimb artery depolarization and swelling-activated Na+ currents in hindlimb artery myocytes. (A) Representative traces of microelectrode impalements under indicated conditions illustrating that pressure-induced depolarization is attenuated in gastrocnemius arteries of Pkd2 smKO mice. Phenylephrine (PE) = 1 μM. Scale bars: Y = 10 mV, X = 20 s. (B) Mean data for membrane potential recordings in pressurized hindlimb arteries in the absence or presence of PE (Pkd2fl/fl: 10 mmHg, n = 11; 100 mmHg, n = 10; 100 mmHg + PE, n = 13 and Pkd2 smKO: 10 mmHg, n = 11; 100 mmHg, n = 10; 100 mmHg + PE, n = 14). * indicates p<0.05 versus 10 mmHg in Pkd2fl/fl. # indicates p<0.05 versus 100 mmHg in the same genotype. (C) Representative ICats recorded between −100 and +100 mV in isotonic (300 mOsm), hypotonic (250 mOsm) and hypotonic bath solution with Gd3+ (100 μM) in the same Pkd2fl/fl and Pkd2 smKO mouse hindlimb artery myocytes. (D) Representative I-V relationships of Gd3+ -sensitive ICats activated by hypotonic solution in Pkd2fl/fl and Pkd2 smKO hindlimb myocytes. (E) Mean data for Gd3+ -sensitive ICats activated by hypotonic solution in Pkd2fl/fl and Pkd2 smKO hindlimb myocytes (n = 5 for each). * indicates p<0.05 versus 250 mOsm, # p<0.05 versus Pkd2fl/fl. (F) Representative I-V relationships between −100 and +100 mV in isotonic (300 mOsm), hypotonic (250 mOsm) and hypotonic bath solution with low (40 mM) Na+ in the same Pkd2fl/fl mouse hindlimb artery myocyte.

DOI: https://doi.org/10.7554/eLife.42628.011
Figure 4—figure supplement 1. PKD2 knockout does not alter phenylephrine (PE)-activated ICa in isolated hindlimb artery myocytes. (A) Representative I-V relationships recorded between -100 and $+100$ mV in the same hindlimb artery myocytes of Pkd2$^{fl/fl}$ or Pkd2 smKO mice in control and PE (10 μM). (B) Mean data for current density at -100 and $+100$ mV (Pkd2$^{fl/fl}$, n = 6 and Pkd2 smKO, n = 6). * indicates p<0.05 versus control in the same genotype.

DOI: https://doi.org/10.7554/eLife.42628.012
Figure 5. Pressure-induced vasoconstriction is unaltered, whereas phenylephrine-induced vasoconstriction is attenuated, in mesenteric arteries of Pkd2 smKO mice. (A) Mean vasoconstriction over a range of pressures in resistance-size mesenteric arteries from Pkd2fl/fl (n = 7) and Pkd2 smKO (n = 9) mice. (B) Original recordings of concentration-dependent, phenylephrine (PE)-induced contraction in mesenteric artery rings. (C) Mean PE-induced contraction (Pkd2fl/fl, n = 5, Pkd2 smKO, n = 6; *p<0.05 versus Pkd2fl/fl). (D) Representative phenylephrine-induced vasoconstriction in pressurized (80 mmHg) fifth-order mesenteric arteries. (E) Mean PE-induced vasoconstriction in pressurized (80 mmHg) fourth-and fifth-order mesenteric arteries (Pkd2fl/fl, n = 6, Pkd2 smKO, n = 6; *p<0.05 versus Pkd2fl/fl at the same PE concentration).

DOI: https://doi.org/10.7554/eLife.42628.013
Figure 5—figure supplement 1. Myocyte PKD2 knockout attenuates phenylephrine-induced vasoconstriction, but does not alter pressure or angiotensin II-induced vasoconstriction in hindlimb arteries. (A) Mean myogenic tone at 80 mmHg illustrating that myogenic tone is similar in third-, fourth- and fifth-order mesenteric arteries and unaltered by PKD2 knockout (Pkd2fl/fl: 3rd n = 4; 4th n = 5; 5th n = 4 and Pkd2 smKO: 3rd n = 7; 4th n = 4; 5th n = 4). (B) Mean data for 60 mM K+-induced constriction in first- and second order mesenteric artery rings (Pkd2fl/fl n = 5; Pkd2 smKO n = 6). (C) Mean data for phenylephrine-induced vasoconstriction in pressurized, endothelium-denuded 4th order mesenteric arteries (Pkd2fl/fl, n = 3 and Pkd2 smKO, n = 3). * indicates p<0.05 versus Pkd2fl/fl. (D) Mean myogenic tone at 80 mmHg in endothelium-denuded 4th order mesenteric arteries (Pkd2fl/fl, n = 3 and Pkd2 smKO, n = 3). (E) Mean data for angiotensin II-induced vasoconstriction in mesenteric arteries (Pkd2fl/fl, n = 11–12 and Pkd2 smKO, n = 10–11).

DOI: https://doi.org/10.7554/eLife.42628.014
Figure 6. PKD2 channels contribute to phenylephrine-induced mesenteric artery depolarization and INa in mesenteric artery myocytes. (A) Representative traces of microelectrode impalements illustrating that phenylephrine (PE, 1 μM)-induced depolarization is attenuated in mesenteric arteries of Pkd2 smKO mice. Scale bars: Y = 10 mV, X = 20 s. (B) Mean membrane potential recordings in pressurized (10 and 80 mmHg) mesenteric arteries and in PE at 80 mmHg (Pkd2fl/fl: 10 mmHg, n = 13; 80 mmHg, n = 9; 80 mmHg + PE, n = 15. Pkd2 smKO: 10 mmHg, n = 11; 80 mmHg, n = 12; 80 mmHg + PE, n = 12). *p<0.05 versus 10 mmHg in the same genotype. # p<0.05 versus 80 mmHg in the same genotype. (C) Original current recordings obtained between /C0 and +100 mV in the same Pkd2fl/fl and Pkd2 smKO myocytes in control, PE (10 μM), low Na+ (40 mM)+PE and low Na+ (40 mM)+PE + Gd³⁺ (100 μM). (D) Mean paired data (Pkd2fl/fl, n = 5; Pkd2 smKO, n = 5, *p<0.05 versus control in the same genotype).

DOI: https://doi.org/10.7554/eLife.42628.015
Figure 6—figure supplement 1. PKD2 knockout does not alter swelling-activated Icat in isolated mesenteric artery myocytes. (A) Representative I-V relationships from the same isolated mesenteric artery myocytes of Pkd2^{fl/fl} or Pkd2 smKO mice in isosmotic (300 mOsm), hyposmotic (250 mOsm) and hyposmotic (250 mOsm) + Gd^{3+} (100 μM) solutions. (B) Mean data for hyposmotic activated Gd^{3+} (100 μM)-sensitive cationic current density at -100 and +100 mV (Pkd2^{fl/fl}, n = 6 and Pkd2 smKO, n = 6).

DOI: https://doi.org/10.7554/eLife.42628.016
Figure 7. Angiotensin II-induced hypertension is attenuated in Pkd2 smKO mice. (A) Telemetric blood pressure time course showing the development of angiotensin II-induced hypertension in Pkd2^fl/fl (n = 6) and Pkd2 smKO mice (n = 9). Osmotic minipumps containing either saline or angiotensin II were implanted one day prior to day 0. * indicates p<0.05 versus Pkd2^fl/fl in the same condition. (B) Western blots illustrating total PKD2 protein in mesenteric and hindlimb arteries of saline-and angiotensin II-treated control mice. (C) Mean total PKD2 protein in mesenteric and hindlimb arteries of angiotensin II-treated mice compared to saline control (n = 8 for each group). * indicates p<0.05 versus saline in the same arterial preparation. (D) Western blots showing surface and intracellular PKD2 protein in arteries of saline-and angiotensin II-treated mice. (E) Mean surface PKD2 protein in mesenteric and hindlimb arteries of angiotensin II-treated mice compared to saline control (n = 8 for each group). * indicates p<0.05 versus saline in the same arterial preparation. (F) Mean data illustrating the percentage of total PKD2 located at the surface in mesenteric and hindlimb arteries of saline-and angiotensin II-treated mice (n = 4 for each group).

DOI: https://doi.org/10.7554/eLife.42628.017
Figure 8. Arterial myocyte PKD2 knockout attenuates vasoconstriction and arterial wall remodeling during hypertension. (A) Mean phenylephrine-induced vasoconstriction in pressurized (80 mmHg) mesenteric arteries from angiotensin II-treated mice (Pkd2^{fl/fl}, n = 7–8; Pkd2 smKO, n = 8).

DOI: https://doi.org/10.7554/eLife.42628.018