Enterococcus faecium secreted antigen A generates muropeptides to enhance host immunity and limit bacterial pathogenesis

Byungchul Kim¹, Yen-Chih Wang¹, Charles W Hespen¹, Juliel Espinosa¹, Jeanne Salje²,
Kavita J Rangan¹, Deena A Oren³, Jin Young Kang⁴, Virginia A Pedicord¹⁵, Howard C Hang¹⁴

¹Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, 10065, USA.
²Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
³Structural Biology Resource Center, The Rockefeller University, New York, NY, 10065, USA.
⁴Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, 10065, USA.
⁵Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, UK.

*To whom correspondence should be addressed: hhang@rockefeller.edu
Abstract

We discovered that *Enterococcus faecium* (*E. faecium*), a ubiquitous commensal bacterium, and its secreted peptidoglycan hydrolase (SagA) were sufficient to enhance intestinal barrier function and pathogen tolerance, but the precise biochemical mechanism was unknown. Here we show *E. faecium* has unique peptidoglycan composition and remodeling activity through SagA, which generates smaller muropeptides that more effectively activate nucleotide-binding oligomerization domain-containing protein 2 (NOD2) in mammalian cells. Our structural and biochemical studies show that SagA is a NlpC/p60-endopeptidase that preferentially hydrolyzes crosslinked Lys-type peptidoglycan fragments. SagA secretion and NlpC/p60-endopeptidase activity was required for enhancing probiotic bacteria activity against *Clostridium difficile* pathogenesis *in vivo*. Our results demonstrate that the peptidoglycan composition and hydrolase activity of specific microbiota species can activate host immune pathways and enhance tolerance to pathogens.
Introduction

The microbiota provides an important barrier to enteric infections and encodes microbe-associated molecular patterns as well as secondary metabolites, which can prime host immunity or attenuate pathogen fitness (Buffie & Pamer, 2013; Milshteyn, Colosimo, & Brady, 2018). For example, polysaccharide A (PSA) from *Bacteroides fragilis* has been reported to activate Toll-like receptor 2 on FOXP3$^+$ regulatory T cells, promote immunologic tolerance and enhance colonization of commensal bacteria (Round et al., 2011). Alternatively, butyrate production by *Clostridial* strains (clusters XIVa and IV) can attenuate inflammation by inducing peripheral regulatory T cells (Arpaia et al., 2013; Furusawa et al., 2013; Smith et al., 2013) and suppress reactive metabolites to prevent the expansion of enteric pathogens (Byndloss et al., 2017). In addition, commensal bacteria such as *Clostridium scindens* can generate secondary bile acids that mediate colonization resistance towards pathogens such as *Clostridium difficile* (Buffie et al., 2015). Other specific commensal strains such as *Enterococcus faecalis* (*E. faecalis*) contain plasmids such as pPD1 that produce bacteriocins, which can kill vancomycin-resistant enterococci and influence niche competition in the gut (Kommineni et al., 2015). While these studies have begun to reveal the functions of some specific commensal bacteria species, the mechanisms of action and specific protective factors for other commensal bacteria that are correlated with pathogen susceptibility in animals are still unknown.

E. faecium is a ubiquitous bacterium that has been recovered from the microbiota of many animals as well as humans (Van Tyne & Gilmore, 2014) and can even colonize the roundworm *Caenorhabditis elegans* (*C. elegans*) (Garsin et al., 2001). While pathogenic strains of *E. faecium* and *E. faecalis* are notable due to their acquisition of drug-resistance and nosocomial infections (Arias & Murray, 2012), commensal strains of *E. faecium* have been reported to protect animals from enteric pathogens and potentially improve host metabolism (Zheng et al., 2016). However, the specific protective factors and mechanisms of commensal *E. faecium* were unknown.
To dissect the protective mechanisms of *E. faecium*, we utilized *C. elegans* as an animal model and discovered that diverse strains of *E. faecium* could protect worms against enteric pathogens (Rangan et al., 2016). *E. faecium* and its growth media effectively prevented *Salmonella* Typhimurium-induced pathogenesis in *C. elegans*. The protective activity of *E. faecium* growth media was protease sensitive, which led to the proteomic analysis of the supernatant and discovery of secreted antigen A (SagA) as one of the most abundant *E. faecium* secreted proteins. Remarkably, administration of recombinant SagA to *C. elegans* was sufficient to attenuate *S. Typhimurium* pathogenesis (Rangan et al., 2016). In addition, chromosomal insertion of *sagA* into non-protective *E. faecalis* (*E. faecalis*-sagA) enabled the expression and secretion of SagA, which also conferred protective activity against *S. Typhimurium* pathogenesis in *C. elegans* (Rangan et al., 2016). *E. faecium* and SagA did not affect *S. Typhimurium* colonization or replication *in vivo*, but rather required *tol-1* signaling in *C. elegans*, suggesting the activation of host innate immunity was the key mechanism for enhanced tolerance against enteric pathogens (Rangan et al., 2016).

To evaluate whether *E. faecium* and SagA function through similar mechanisms in mammals, we evaluated germ-free and antibiotic-treated mouse models of infections. In these studies, *E. faecium* colonization, but not *E. faecalis*, improved intestinal barrier morphology, permeability, gene expression (Muc2, cryptdin2 and RegIIIγ) and prevented *S. Typhimurium* pathogenesis (Pedicord et al., 2016). *E. faecium* protection against *S. Typhimurium* did not involve adaptive immunity mechanisms, but required innate immune signaling factors such as MyD88 (Toll-like receptor adaptor) and NOD2 as well as RegIIIγ, a key effector of intestinal barrier function (Pedicord et al., 2016). *E. faecalis*-sagA also increased the expression of intestinal epithelial barrier function genes (Muc2, cryptdin2 and RegIIIγ) and enhanced bacterial segregation from intestinal epithelial cells *in vivo* similar to *E. faecium*. Moreover, SagA can be expressed in
probiotic bacteria such as *Lactobacillus plantarum* and enhanced its protective activity against *S. Typhimurium* as well as *C. difficile* (Pedicord et al., 2016; Rangan et al., 2016). These studies demonstrated that *E. faecium* and SagA-expressing bacteria were sufficient to enhance intestinal barrier function and prevent infection by diverse Gram-negative and Gram-positive enteric pathogens, but the biochemical mechanism(s) by which innate immunity was activated was unknown.

Here, we demonstrated that *E. faecium* peptidoglycan contains smaller non-crosslinked muropeptides compared to non-protective strains of *E. faecalis*, which more effectively activated the intracellular peptidoglycan pattern recognition receptor NOD2. In addition, we determined the X-ray structure of the *E. faecium* SagA-NlpC/p60 catalytic domain and showed that it encodes L-Lys-type endopeptidase activity. The SagA-NlpC/p60 domain selectively cleaved purified crosslinked peptidoglycan fragments into smaller muropeptides, which were more active towards NOD2 in mammalian cells. Furthermore, we demonstrated that the secretion and peptidoglycan hydrolase activity of SagA was required to enhance probiotic bacteria activity against *C. difficile* infection *in vivo*. Our structural, biochemical, cellular and *in vivo* studies revealed how *E. faecium* and its secreted peptidoglycan hydrolase SagA activate innate immunity in mammals and provide a mechanistic basis by which commensal bacteria modulation of peptidoglycan composition confers host protection against enteric infections.

Results

Since *E. faecium* protection against *S. Typhimurium* was abrogated in *Nod2*-/- mice *in vivo* and SagA contains predicted peptidoglycan hydrolase (Pedicord et al., 2016), we focused on whether *E. faecium* and SagA exhibit unique peptidoglycan composition and activity. As *sagA* was shown to be essential for *E. faecium* growth (Teng, Kawalec, Weinstock, Hryniewicz, & Murray, 2003), we focused on the characterization of *E. faecium* (Com15), *E. faecalis* (OG1RF), and *E. faecalis*
sagA (Rangan et al., 2016), in which the sagA gene was chromosomally inserted downstream of
mreD and expressed under the endogenous sagA promoter. To directly compare SagA protein
expression levels in these strains, we generated polyclonal sera against full length recombinant
SagA (Figure 1 - figure supplement 1) and confirmed that there were comparable levels of
SagA expression in the cell pellets and secretion in the supernatants of E. faecium and E. faecalis-
sagA, which was absent in E. faecalis (Figure 1a). Analysis of the bacterial growth rates showed
that E. faecium divided most rapidly and reached optical density values of up to OD_{600nm} = 2.5
after 4 hrs (Figure 1b). During lag phase, there was no marked difference in E. faecium, E.
faecalis, and E. faecalis-sagA. However, E. faecalis-sagA exhibited a decreased growth rate
compared to E. faecalis after 3 hrs, resulting in slower exponential growth (Figure 1b). Analysis
of these bacterial strains by transmission electron microscopy showed that E. faecium exhibited
unique cell wall morphology compared to E. faecalis (Figure 1c). Interestingly, E. faecalis-sagA
exhibited a significant increase in bacterial cell width as well as the presence of minor
deformations to the integrity of the cell wall structure (Figure 1c,d), suggesting SagA expression
may regulate cell wall composition and integrity in Enterococcus.

To evaluate whether SagA expression affects bacterial cell wall composition, we isolated
peptidoglycan from log-phase E. faecium, E. faecalis, and E. faecalis-sagA and analyzed the
mutanolysin-digested peptidoglycan fragments by LC-MS/MS as previously described (Kuhner,
Stahl, Demircioglu, & Bertsche, 2014). The major monomeric and crosslinked muropeptides we
isolated from E. faecium and E. faecalis were similar to previous studies (Billot-Klein et al.,
1996; Emirian et al., 2009; Patti, Kim, & Schaefer, 2008), which showed that E. faecium
generally contains non crosslinked muropeptides, including GlcNAc-MurNAc-L-Ala-D-isoGln
(GlcNAc-MDP) compared to E. faecalis (Figure 2a). Interestingly, the analysis of peptidoglycan
from E. faecalis-sagA revealed a decrease in muropeptide fragments (peak 2, 7, 9, 13, and 17)
compared with E. faecalis (Figure 2a, Figure 2 - figure supplement 1a,b and Supplementary
Tables 1 and 2). To evaluate whether these changes in bacterial growth, cell morphology and peptidoglycan composition were associated with SagA expression and not other mutations generated during chromosomal sagA insertion, we performed whole genome sequencing on both E. faecalis and E. faecalis-sagA. This analysis confirmed the insertion of sagA downstream of mreD, as originally designed, and also revealed a total of 39 genes with synonymous and non-synonymous mutations ranging from 25 to 100 percent coverage (Supplementary Table 3). However, none of the non-synonymous mutations greater than 50 percent coverage were in genes directly associated with bacterial cell wall synthesis or remodeling, suggesting SagA expression affected growth, morphology and peptidoglycan composition of E. faecalis-sagA.

We then tested whether E. faecium, E. faecalis and E. faecalis-sagA could activate peptidoglycan pattern recognition receptors. In mammals, NOD1 and NOD2 are the predominant sensors of peptidoglycan fragments and are reported to recognize gamma-D-glutamyl-meso-diaminopimelic acid (iE-DAP) and muramyl-dipeptide (MDP), respectively (Caruso, Warner, Inohara, & Nunez, 2014; Philpott, Sorbara, Robertson, Croitoru, & Girardin, 2014). Peptidoglycan activation of intracellular NOD1 and NOD2 triggers the expression of NF-κB-responsive genes associated with host immunity and inflammation (Caruso et al., 2014; Philpott et al., 2014). To evaluate the activation of these receptors, increasing amounts of E. faecium, E. faecalis and E. faecalis-sagA were added to NOD1 or NOD2-transfected HEK293T cells co-expressing NF-κB luciferase reporters. Compared to synthetic ligands iE-DAP and MDP, E. faecium with a multiplicity of infection (MOI = 1) activated NOD2, but not NOD1 (Figure 2b). Higher MOI of E. faecium resulted in the detachment of transfected HEK293T cells (data not shown). In contrast, E. faecalis and E. faecalis-sagA required 10^3-fold more bacteria (MOI = 10^3) to activate NOD2, but not NOD1 (Figure 2b). The selective activation of NOD2 is consistent with its agonist specificity for Lys-type muropeptides, which were found in Enterococci peptidoglycan (Billot-Klein et al.,
While the chromosomal expression of SagA altered the peptidoglycan composition of *E. faecalis* (Figure 2a), these differences did not appear to be sufficient to enhance direct bacterial activation of NOD2 in HEK293T cells. The differences in NOD2 activation by *E. faecium* compared to *E. faecalis* and *E. faecalis*-sagA may be due to enhanced bacterial adhesion and/or internalization since more *E. faecium* was recovered from gentamicin protection assays (Figure 2c). These results showed *E. faecium* contained smaller muramyl peptides such as GlcNAc-MDP and may directly interact with mammalian cells to activate NOD2.

To further dissect the protective activity of *E. faecium* and SagA, we focused on the activity of purified SagA and soluble peptidoglycan fragments. SagA encodes an N-terminal signal sequence, predicted coiled-coil domain, Ser/Thr-rich linker region and C-terminal NlpC/p60-family peptidase domain (Figure 3a). Bioinformatic analysis suggested that SagA is unique to *E. faecium* (Figure 3 - figure supplement 1), with no clear homologues with greater than 25 percent protein sequence identity in most sequenced strains of *E. faecalis* (Neumann et al., 2019; Palmer et al., 2010). Nonetheless, the SagA from *E. faecium* Com15 does share significant protein sequence similarity to other NlpC/p60 orthologs in other *E. faecium* strains (Figure 3 - figure supplement 2). Indeed, we demonstrated that the NlpC/p60-family peptidase domain and conserved active site residues were required for SagA-mediated protection in *C. elegans* (Rangan et al., 2016). However, the precise peptidoglycan substrates of SagA were unknown.

To directly evaluate the peptidoglycan hydrolase activity of SagA, we expressed and purified full-length His-tagged SagA and truncated C-terminal His-tagged constructs along with C443A mutants (Figure 3 - figure supplement 3a,b). These recombinant SagA constructs did not cleave purified intact *E. faecium* peptidoglycan, but incubation of the SagA-NlpC/p60 domain with mutanolysin-digested peptidoglycan yielded small muropptides by in-gel fluorescence profiling.
Intriguingly, the SagA-NlpC/p60 domain only cleaved mutanolysin-digested peptidoglycan from *E. faecium* and *E. faecalis*, but not *E. coli* ([Figure 3 - figure supplement 3c](#)). This suggested that it may be specific for L-Lys-type peptidoglycan found in *Enterococcus* versus mDAP-type in *E. coli*. LC-MS analysis of the full-length SagA and SagA-NlpC/p60 reaction products revealed the generation of several new peptidoglycan fragments as enzymatic products such as tripeptide (peak a), GlcNAc-MDP (peak b), GlcNAc-MurNAc-tri-di (peak c), GlcNAc-MurNAc-tetra-tri (peak d) and larger fragments (peak e) ([Figure 3 - figure supplement 3e and Supplementary Table 4](#)), which were absent when the full-length SagA-C443A and the SagA-NlpC/p60-C443A active site mutants were added. Full-length SagA expressed and purified from *E. coli* at similar protein concentrations was less active with mutanolysin-digested peptidoglycan than truncated SagA-NlpC/p60 domain ([Figure 3 - figure supplement 3e](#)), suggesting the N-terminus may inhibit or modulate the activity of NlpC/p60 domain, akin to the coiled-coil domain of PcsB from *Streptococcus pneumoniae* (Bartual et al., 2014).

To understand the molecular mechanism of *E. faecium* SagA-NlpC/p60, we determined crystal structure of the *E. faecium* SagA-NlpC/p60 domain. Gel-filtration analysis revealed that SagA-NlpC/p60 is monomeric ([Figure 3b](#)) and amenable to crystallization (Supplementary Results). The structure of the SagA-NlpC/p60 domain was solved to 2.4 Å resolution by using X-ray crystallography. The data were indexed in space group P432 with one molecule per asymmetric unit (asu) and the initial phases was estimated by molecular replacement method by using *Staphylococcus aureus* CwIT (PDB 4FDY) as a search model. The electron density was well defined for the majority of the protein residues. Flexible segments of the first 26 residues, the His$_6$-tag, and some side chains were disordered and not included in the final model ([Figure 3c,d](#), PDB ID: 6B8C, Supplementary Table 5). The SagA-NlpC/p60 domain contained the typical features of the cysteine peptidase fold (Anantharaman & Aravind, 2003), a central six-stranded,
antiparallel β-sheet flanked by three surrounding α-helices (Figure 3c). The overall dimensions of
the structure were about 32.5 x 30 x 23 Å (Figure 3d) and shared significant structural homology
to other NlpC/p60 hydrolase domains. The root-mean-square deviations between superimposed C
atoms was a range of 1.6 ~ 2.0 Å when comparing with NlpC/p60 hydrolase domains of other
structures (Supplementary Table 6 and Figure 3 - figure supplement 4). The conserved
catalytic triad (C443, H494 and H506) of the SagA-NlpC/p60 domain was located in a putative
substrate-binding groove between the subdomains in the α2 and β3–β4 (Figure 3c,d), where
electron density for these key amino acid residues were well observed (Figure 3e). An
electrostatic potential analysis of the SagA-NlpC/p60 domain showed that the putative substrate-
binding groove was mostly composed of negatively charged amino acid residues (Figure 3f).
Homology-based structural search using ConSurf server suggested that the residues with the
highest percentage of conservation were in the active site in the putative substrate binding pocket.
Structural alignments with other homologs also showed similar conformations of the catalytic
triad in the active site to that of the YkfC from Bacillus cereus (Xu et al., 2010), NpPCP from
Nostoc punctiforme (Xu et al., 2009), AvPCP from Anabaena variabilis (Xu et al., 2009), CwIT
from Staphylococcus aureus (Xu, Chiu, et al., 2014), Spr from Escherichia coli (Aramini et al.,
2008), RipA from Mycobacterium tuberculosis (Ruggiero et al., 2010), and LysM from Thermus
thermophilus (Wong et al., 2015) active sites (Figure 3g).

To explore how the SagA-NlpC/p60 domain may interact with peptidoglycan substrates, we
compared our structure to other NlpC/p60 hydrolases and performed potential substrate docking
studies. While no structure of a NlpC/p60 hydrolase bound to peptidoglycan substrates has been
determined, previous docking studies of CwIT suggested electropositive regions of these enzymes
may be involved in substrate binding (Xu, Chiu, et al., 2014). Indeed, the overlay of our SagA-
NlpC/p60 structure with CwIT suggests potential conserved regions of substrate binding (Figure
We then performed docking studies of solved structure with peptidoglycan fragments using Grid-based Ligand Docking with Energetics (GLIDE) module of the Schrödinger (Friesner et al., 2006). Amongst the peptidoglycan fragments we explored, GlcNAc-MurNAc-L-Ala-D-isoGln-L-Lys-D-Ala (Figure 4b,c) and the corresponding tetrapeptide alone (Figure 4 - figure supplement 1) afforded a set of ligand-bound poses in the putative substrate-binding groove with high-scoring calculated binding free energies from 1 - 50 (Supplementary Table 7). Manual inspection of the top-posed GlcNAc-MurNAc-tetrapeptide docked into the SagA-NlpC/p60 domain showed the predicted active site cysteine (C443) and histidine residues (H494 and H506) were well positioned near the potential site of peptide bond cleavage (Figure 4c, pose 1 from Supplementary Table 7) and suggested peptidoglycan fragments may extend across the putative substrate-binding groove to interact with electropositive amino acid residues on the potential glycan and peptide binding sites at the surface (Figure 3f). Interestingly, the SagA-NlpC/p60 ligand-docked models also suggested that two tryptophans (W433 and W462) may serve as clamps for binding potential peptidoglycan substrates (Figure 4b,c). Indeed, single and double Ala mutants of W433 and W462 significantly abrogated hydrolytic activity of SagA-NlpC/p60 domain (Figure 4 - figure supplement 2). These results demonstrate C443, W433 and W462 are crucial for the SagA-NlpC/p60 peptidoglycan hydrolase activity and encompass the enzyme active site as well as putative substrate-binding groove.

To identify the precise substrate of SagA-NlpC/p60, we further isolated muropeptides (disaccharide-tripeptide, disaccharide-tetrapeptide, disaccharide-pentapeptide, and crosslinked disaccharide-tripeptide-disaccharide-tetrapeptide) from E. faecium peptidoglycan. Disaccharide-tripeptide, disaccharide-tetrapeptide and disaccharide-pentapeptide were not cleaved or only showed modest production of GlcNAc-MDP (Figure 4 - figure supplement 3a,b,c). However, incubation of SagA-NlpC/p60 with disaccharide-tripeptide crosslinked to disaccharide-tetrapeptide readily generated GlcNAc-MDP and the corresponding GlcNAc-MurNAc-L-Ala-D-
isoGln-L-Lys-crosslinked-D-Ala-L-Lys heptapeptide product (GlcNAc-M7P) (**Figure 4d**) and **Figure 4 - figure supplement 3d** with a specific activity of approximately 67 ± 7 nmol/min/mg at 37 °C (**Figure 4e**), which did not occur with the NlpC/p60-C443A mutant (**Figure 4 - figure supplement 3d**). The identity of GlcNAc-MDP was further confirmed by LC-MS/MS analysis and its fragmentation into MDP (**Figure 4 - figure supplement 4b,c**). These results demonstrated that SagA-NlpC/p60 encodes cysteine endopeptidase activity that prefers crosslinked peptidoglycan fragments and cleaves the peptide bond between D-iGln and L-Lys (**Figure 4f**).

We next evaluated the activity of the crosslinked muropeptide substrate and SagA-NlpC/p60-generated muropeptides, GlcNAc-MDP and GlcNAc-M7P, on NOD1 and NOD2 activation in mammalian cells. To control for endogenous activation, non-transfected parental HEK-Blue-Null2 cells were also used as a negative control (**Figure 5a**). None of SagA-generated ligands activated NOD1 (**Figure 5a**). We chemically synthesized GlcNAc-MDP (**Figure 5 - figure supplement 1**) and directly compared its activity to SagA-generated GlcNAc-MDP and commercial MDP as a positive control. Using NOD1 and NOD2 HEK-Blue cells that exhibited better dose-response to ligands, we found that SagA-generated and synthetic GlcNAc-MDP activated NOD2 in a dose-dependent manner comparable to commercial MDP standard (**Figure 5b**). SagA-NlpC/p60-generated muropeptides, GlcNAc-MDP most effectively activated NOD2, and GlcNAc-M7P less effectively and both ligands were more active than the crosslinked peptidoglycan fragment (**Figure 5b**). These results demonstrated that SagA-generated muropeptides can directly activate NOD2 in mammalian cells, consistent with previous studies of MDP derivatives (Dagil et al., 2016; Davis, Nakamura, & Weiser, 2011; Fujimoto et al., 2009; Stephen E. Girardin et al., 2003; Wang et al., 2013), which suggests that GlcNAc-MDP derivatives are further processed by hydrolytic enzymes to generate MDP in mammalian cells. Importantly, these results indicated non-crosslinked muropeptides more effectively activate
NOD2 in mammalian cells and provides a biochemical mechanism by which *E. faecium* and secreted SagA may enhance host immunity towards enteric pathogens.

To determine if SagA cleavage of peptidoglycan is important *in vivo*, we evaluated the protective activity of bacteria expressing wild-type or SagA mutants in mouse model of *C. difficile* infection. Since *sagA* is essential in *E. faecium* (Teng et al., 2003) and oral administration of recombinant SagA was not effective (data not shown), we focused on heterologous expression of SagA variants in *E. faecalis* and the probiotic bacteria *L. plantarum* (*Lpl*) (WCSF1). While chromosomal insertion of *sagA* into *E. faecalis* was functional (Rangan et al., 2016), insertion of a SagA active site mutant yielded low or undetectable levels of protein expression in cell lysate or supernatant (*Figure 5 - figure supplement 2*). Overexpression of SagA variants on plasmids in *E. faecalis* were either toxic or did not yield adequate levels of protein expression (data not shown). However, plasmid-based expression of SagA-His6 variants in *L. plantarum* yielded comparable levels of wild-type SagA, signal sequence mutant (ΔSS) as well as active site mutant (C443A) in cell lysates, with reduced levels of ΔSS mutant in the supernatant (*Figure 5c*). Heterologous expression of these SagA variants did not significantly alter the *L. plantarum* peptidoglycan composition (amidated mDAP-type) (Goffin et al., 2005) (*Figure 5 - figure supplement 3*). However, colonization of antibiotic (Abx)-treated mice with these *L. plantarum* strains showed that wild-type SagA protected mice from *C. difficile* pathogenesis, while the SagA signal sequence (ΔSS) as well as active site (C443A) mutant were not protective and comparable to *L. plantarum-vector* and PBS controls (*Figure 5d* and *Figure 5 - figure supplement 4*). These results demonstrate that SagA secretion and peptidoglycan endopeptidase activity are required for enhancing the activity of probiotic bacteria against enteric pathogens *in vivo*.

\[\text{13} \]
Discussion

The microbiota and specific strains of commensal and probiotic bacteria have been suggested to activate peptidoglycan pattern recognition receptors in vivo (Caruso et al., 2014; Philpott et al., 2014). Moreover, deletion or loss-of-function mutations of NOD2 in particular are associated with gut microbiota dysbiosis, invasion of pathobionts and inflammatory bowel disease (IBD) (Caruso et al., 2014; Philpott et al., 2014), which suggests that NOD2 is important for sensing peptidoglycan in the gut and priming innate immune pathways to maintain intestinal barrier function and preventing microbiota- and pathogen-induced inflammation (Al Nabhani, Dietrich, Hugot, & Barreau, 2017; Caruso et al., 2014; Philpott et al., 2014). Indeed, our previous studies showed that NOD2 was required for E. faecium-mediated protection against enteric pathogen infection (Pedicord et al., 2016). However, the mechanism by which E. faecium and its secreted peptidoglycan hydrolase SagA engaged NOD2 was unknown.

To dissect the biochemical mechanism(s) by which E. faecium and SagA enhances intestinal barrier function and protects against enteric pathogens, we evaluated E. faecium peptidoglycan composition, SagA structure, their associated muropeptide products, activation of peptidoglycan pattern recognition receptors in mammalian cells. The comparative analysis of the peptidoglycan composition and NOD2 activity between bacteria suggested that E. faecium more effectively activated NOD2 through non-crosslinked muropeptides such as GlcNAc-MDP that was not present in E. faecalis and L. plantarum, even with SagA expression (Figure 2 and Figure 5 - figure supplement 3). The results suggested E. faecium may be intrinsically more capable of interacting with mammalian cells and/or directly activate NOD2 even though both Enterococci species have Lys-type peptidoglycan. Nonetheless, SagA expression still enhances the protective activity of E. faecalis and L. plantarum against enteric pathogens in vivo (Pedicord et al., 2016; Rangan et al., 2016), suggesting secreted SagA may also prime or activate immune pathways.
To characterize the activity of secreted SagA, we expressed and purified recombinant SagA and investigated on the structure and enzymatic activity of C-terminal NlpC/p60 hydrolase domain. Although full-length SagA purified from *E. coli* was active, we focused on the C-terminal NlpC/p60 hydrolase domain since it was significantly more active *in vitro*. X-ray crystallography showed that the SagA-NlpC/p60 domain was indeed similar to other bacterial hydrolases and shared similar active site residues (Figure 3). Analysis of SagA-NlpC/p60 domain with purified peptidoglycan fragments demonstrated that it showed endopeptidase activity and preferentially cleaved L-Lys-type crosslinked peptidoglycan fragments (Figure 4), which required the conserved active site Cys443. In addition, W433 and W462 were also essential for the endopeptidase activity *in vitro* and may be involved in stabilization of the peptidoglycan substrate binding based on our SagA-NlpC/p60 structure and docking studies. These tryptophan residues or other hydrophobic aromatic amino acids are highly conserved amongst other SagA orthologs in *Enterococci* as well as other hydrolases in other bacteria (Figure 3 - figure supplement 1 and 2).

Beyond these highly conserved amino acid residues in the SagA-NlpC/p60 active site, the molecular basis for Lys- or DAP-type peptidoglycan specificity is still unclear from ours and other existing NlpC/p60 hydrolases structures (Xu et al., 2009; Xu et al., 2010; Xu, Mengin-Lecreulx, et al., 2014; Xu et al., 2015). Additional studies of these SagA-NlpC/p60 mutants with crosslinked muropeptides are therefore in progress to fully understand their roles in catalysis and substrate recognition. Further studies of full-length SagA are also needed to investigate its structure and activity as well as potential auto-inhibition by the N-terminal coil-coil domain observed in other NlpC/p60 hydrolases (Bartual et al., 2014). For example, the X-ray structure of full-length *Streptococcus pneumoniae*, PcsB, another class of peptidoglycan hydrolase that contains an N-terminal coil-coil domain, suggest this domain facilitate its dimerization and regulate activity as well as bacterial cell division (Bartual et al., 2014). The function of SagA and its orthologs in *Enterococci* peptidoglycan turnover and cell division remains to be determined,
since sagA is essential in E. faecium (Teng et al., 2003) and requires new approaches for conditional inactivation for further studies.

Notably, these studies demonstrated that SagA-NlpC/p60 generated non-crosslinked muropeptides such as GlcNAc-MDP, which were also found in E. faecium peptidoglycan and activated NOD2 in mammalian cells more effectively than larger and crosslinked muropeptides (Figure 5). In addition to these in vitro biochemical studies and ex vivo activation of NOD2 in mammalian cells, we demonstrate that the secretion and endopeptidase activity of SagA is required for enhancing the protective activity of L. plantarum against C. difficile infection in vivo (Figure 5d). Collectively, our results suggest that E. faecium and its secreted peptidoglycan hydrolase SagA generates small muropeptides that activate NOD2, which triggers downstream signaling pathways to enhance intestinal barrier function and host immunity (Figure 6). Although MDP were not active in C. elegans, which does not have a clear NOD2 ortholog, MurNAc and MurNAc-L-Ala were sufficient to attenuate bacterial pathogenesis and required the Tol-1 signaling (Rangan et al., 2016), suggesting the recognition of small bacteria-specific glycans may also be conserved in nematodes but utilize different receptors akin to insects (Dziarski & Gupta, 2006). In mammals, smaller muropeptide fragments have been reported to enhance NOD2 activation ex vivo (Dagil et al., 2016; Davis et al., 2011; Fujimoto et al., 2009; S. E. Girardin et al., 2003; Wang et al., 2013) and function as more effective adjuvants for vaccination (Hancock, Nijnik, & Philpott, 2012; Ogawa, Liu, & Kobayashi, 2011; Rubino et al., 2013) or enhance monocyte activity in vivo (Coulombe, Fiola, Akira, Cormier, & Gosselin, 2012; Namba, Nakajima, Otani, & Azuma, 1996). Since NOD2 is important for modulating immune signaling in many areas of host physiology and disease (Caruso et al., 2014; Keestra-Gounder & Tsolis, 2017; Philpott et al., 2014), further analysis of Enterococci and SagA orthologs will be important for understanding specific microbiota-host interactions and may afford new opportunities for therapeutic development.
Materials and Methods

Growth curve

For comparison between bacterial growth in the medium, the stationary-phase bacterial suspension was diluted using fresh BHI medium to yield a similar bacterial concentration. 1 ml of this dilution was added to 100 ml of fresh 37 °C pre-warmed BHI medium. The new suspension was incubated at 37 °C, and the change in bacterial population in the medium with time (the growth curve) was measured at 0.5 hr intervals. Optical density measurements (at OD$_{600}$) were taken at each time point using a SpectraMax M2 spectrophotometer (Molecular Devices).

Generation of anti-SagA polyclonal sera

The anti-SagA polyclonal sera were generated by Pocono Farm and Rabbit company. Briefly, rabbits were immunized by multiple intradermal injections with a total of 1 ml of purified full-length SagA (1 mg/ml) in saline emulsified with an equal volume of complete Freund's adjuvant. 100 μg of recombinant SagA emulsified in Freund’s incomplete adjuvant was administered subcutaneously twice every 2 weeks. Animals were bled monthly and the sera stored at 4 °C until required. Approximately 5 ml of blood was collected prior to each boost and the antibody titers in the sera were determined by enzyme-linked immunosorbent assay (ELISA). After the final boosts were administered, the rabbits were sacrificed and their blood collected. It is the antisera prepared from these final bleeds that were used to carry out the western-blot analysis.

Western blot analysis of bacterial pellets and supernatant

Proteins were separated by SDS-PAGE on 4-20 % Criterion TGX precast gels (Bio-Rad), then transferred to nitrocellulose membrane (0.2 μM, BioTrace NT Nitrocellulose Transfer Membranes, Pall Laboratory). HRP conjugated polyclonal anti-His$_6$ (abcam, ab1187) and polyclonal SagA serum as a primary antibody / HRP conjugated anti-Rabbit IgG (GE Healthcare, NA 934V) as a secondary antibody were used for His$_6$ and SagA blots respectively. Polyclonal
SagA primary antibodies were used at a 1:50000 dilution and secondary antibody at 1:10000, unless otherwise stated. Membranes were blocked for 1 h in 1 % milk, incubated with primary antibody in 1 % milk for 1 h, washed 5× with TBS-T (Tris-buffered saline, 0.1% Tween 20), incubated with secondary antibody, and washed with 4 × TBS-T. Protein detection was performed with ECL detection reagent (GE Healthcare) on a Bio-Rad ChemiDoc MP Imaging System.

Electron microscopy

Bacteria were inoculated from glycerol stocks onto BHI plates and incubated at 37 °C overnight. Individual colonies were grown in 2 ml BHI media at 37 °C and 220 rpm overnight. Bacterial cultures were diluted 1/10-1/50 in fresh BHI media and incubated at 37 °C and 220 rpm for a further 3-5 hours until they reached mid-exponential phase (OD600 ~ 0.4 - 0.7). 1 ml bacteria were combined with 1 ml 2x fixative (8% paraformaldehyde, 4% glutaraldehyde, 0.2 M sodium cacodylate, pH 7.4) and incubated at room temperature for 10 - 15 minutes. Samples were pelleted, supernatant removed, and pellets were resuspended in 1 x fixative (4% paraformaldehyde, 2% glutaraldehyde, 0.1 M sodium cacodylate, pH 7.4). Then pellets were post-fixed in 1% osmium tetroxide for 1 hour on ice. Fixation, ethanol dehydration, infiltration and polymerization were microwave processed using a Pelco Biowave (Ted Pella). The dehydration series was performed using 50%, 70%, 3 x 100% ethanol and 100% acetone. Bacteria were infiltrated with 1:1 LR white / acetone and two additional exchanges of LR White. Silver sections were picked up on formvar coated mesh grids, post-stained using 2 % UA and imaged on a JEOL 100CX with an AMT XR41 digital imaging system at 80kV.

Overexpression and purification of SagA constructs

For *E. coli* BL21-RIL (DE3), 1L LB cultures were inoculated with overnight cultures with appropriate antibiotics, grown for 2 hours or until OD600 ~ 0.5, induced with 1 mM isopropyl-D-
thiogalactopyranoside (IPTG), then grown for an additional 2 hours. Cells were collected and resuspended in 20 ml of lysis buffer (20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.1% SDS, 0.025 U/ml benzonase, and 1x protease inhibitor cocktail). After 15 min of sonication followed by centrifugation at 30,000 x g for 30 min, the supernatant containing the soluble target protein was collected and loaded onto a His60 Ni Superflow resin (Takara Bio) equilibrated with the binding buffer (PBS buffer) for a 1 hour incubation. The target protein was eluted with 300 mM imidazole. Semi-purified protein was dialyzed into PBS buffer at 4 °C overnight using 10K MWCO Slide-A-Lyzer MINI dialysis devices (Thermo Fisher Scientific). Protein was further purified by loading onto a Superdex 75 Increase 10/300 GL column (GE Healthcare) pre-equilibrated with PBS. Fractions containing the target protein were combined and concentrated to 17 mg/ml for crystallization. Protein concentration was estimated by BCA assay (Pierce Protein Biology) and protein was stored at -80 °C in PBS buffer and 10% glycerol.

For E. coli BL21-RIL (DE3) encoding full length SagA-His₆ constructs, 300 ml LB culture media was collected after 2 hours of IPTG-induced expression and secretion of the target protein. The culture supernatant containing the secreted target protein was vacuum filtered through 0.2 μm membrane and then added to Jumbosep centrifugal devices with 10K MWCO membrane inserts (Pall Life Sciences) for 5-fold concentration and buffer exchange to PBS. The protein concentrate was collected and loaded onto a His60 Ni Superflow resin pre-equilibrated with PBS for overnight incubation and subsequent affinity chromatography and dialysis as described above. The protein was further purified by loading onto a Superdex 200 Increase 10/300 GL column (GE Healthcare) pre-equilibrated with PBS. Fractions containing the target protein were combined and concentrated to 2 mg/ml for in vitro activity assays. Protein concentration estimation and protein storage were performed as described above.
Peptidoglycan purification

Bacteria (E. faecium and E. faecalis) were grown in fresh BHI medium with shaking at 37 °C to log-phase (OD_{600} of 0.6). Peptidoglycan was extracted by resuspending the bacterial cell pellet in 0.25% SDS solution in 0.1 M Tris-HCl, pH 6.8 and boiling the suspension for 20 minutes at 100 °C in a heating block as previously described (Kuhner et al., 2014). The resulting insoluble cell wall preparation was washed with distilled water six times until free of SDS. The cell wall was purified by treatment with benzonase followed by trypsin digestion. Then, insoluble cell wall was recovered by centrifugation (16,000 x g, 10 min, 4 °C), and washed once in distilled water. To obtain pure peptidoglycan, cell wall was then suspended in 1 M HCl and incubated for 4 h at 37 °C in a shaker to remove wall teichoic acid. The insoluble material was collected by centrifugation (16,000 x g, 10 min, 4 °C) and washed with distilled water repeatedly until the pH was 5–6. The final peptidoglycan was lyophilized and stored at -20 °C. For muropeptide analysis, purified peptidoglycan was digested with mutanolysin from Streptomyces globisporus (Sigma, 10 KU/ml of mutanolysin in ddH₂O) in 10 mM sodium phosphate buffer, pH 4.9 for 16 hr at 37 °C. The enzyme reaction was stopped by incubating at 100 °C for 3 min. The resulting soluble muropeptide mixture was then analyzed by ANTS labeling described below.

In-gel fluorescence profiling of peptidoglycan fragments

E. coli supernatants were prepared by inoculating cultures 1:50 with an overnight culture of E. coli BL21-RIL(DE3) expressing SagA construct containing His_{6} at C-terminus. Cultures were grown for 2 hours, then induced with 1 mM IPTG, and grown for an additional 2 hours. For peptidoglycan digests, 100 μg of E. coli, E. faecium, and E. faecalis peptidoglycan which was predigested with 20 μg mutanolysin for 16 hr at 37 °C was incubated with 20 μg of purified SagA-His_{6} overnight in PBS at 37 °C. Peptidoglycan digests were dried by speed-vac before ANTS labeling. ANTS labeling was performed as described (Jackson, 1990). 10 μl of ANTS reaction mix was added to each tube of dried material (1:1 mixture of 0.2 M ANTS (in 3:17 acetic
acid:water): 1 M NaCNBH$_3$ (in DMSO)). Reactions were incubated overnight at 37 °C. 0.5-3.5 μL of the ANTS labeled mixtures were mixed 1:1 with 50% glycerol and samples were separated by native PAGE on a hand-cast 37-40% Tris-glycine acrylamide gel (19:1 polyacrylamide:bisacrylamide, with a 20% acrylamide stack) at 100 V for ~ 4 hours. ANTS-labeled synthetic fragments MDP, GlcNAc, MurNAc, and MurNAc-L-Ala were run for comparison. A sugar-less pentapeptide Ala-D-γ-Glu-Lys-D-Ala-D-Ala (Sigma) was run to show specificity of the UV signal and empty lanes adjacent to sample lanes were loaded with samples of ANTS labeled Ala-D-γ-Glu-Lys-D-Ala-D-Ala to prevent lane warping. Remaining lanes were loaded with 20% glycerol. Gels were imaged on the ChemiDoc MP system (Bio-Rad) using the Sybr-safe UV imaging setting.

LC-MS analysis

For determination of the reaction products following SagA-NlpC/p60 digestion of mutanolysin-digested peptidoglycan, LC-MS analysis was carried out by the Rockefeller Proteomics Resources Center. For analysis of sample, 15 μl of digests were separated on a Acclaim 120 C$_{18}$ column (2.1 μm, 2.1 x 150 mm) (Thermo Scientific™) operating at 52 °C. Runs were performed at 0.2 ml/min in a mobile phase (A) of 0.1% TFA in water and an eluent (B) of 0.1% TFA in methanol using linear gradients of 0 – 30 % B over 60 min. Products were then analyzed with an Agilent 1200 series LC/MSD TOF using electrospray ionization in positive mode, acquiring the mass range of 50 to 2000 m/z.

In vitro assay of SagA-NlpC/p60 activity using HPLC-MS

Hydrolase assays were conducted in 200 μl of SagA buffer containing pure muropeptide. SagA was added at 5 μM and incubated at 37°C for 1 h, unless indicated. The endopeptidase activity of SagA was determined with the crosslinked disaccharide tri-tetrapeptide and disaccharide tetrapeptide as substrates. All enzymatic reactions were quenched by boiling the samples for 5
min at 95 °C and centrifuged at 16,000 g for 10 min to discard precipitated protein. The supernatants (reaction products) were injected into the HPLC whereas the remaining insoluble pellet was digested with muramidase and further processed for HPLC analysis as described above. Enzymatic activities were estimated from the variation in the abundance of presumed substrate and product muropeptides relative to an undigested control sample. Abundance of individual PG chains was calculated by integrating the area under the curve for each chain with the sum of all detectable peaks.

To measure specific activity, 0.5 mM of the crosslinked disaccharide tri-tetrapeptide and disaccharide tetrapeptide as substrates were incubated (total volume 50 μl) with 10 μg SagA-NlpC/p60 at 37 °C for 0, 0.1, 0.25, 0.5, 1, 2 h with purified SagA-NlpC/p60. The reaction was stopped by incubation for 5 min at 95 °C. The incubation was then centrifuged for 10 min at 13000 x g and the supernatant was analyzed by LC-MS as described above.

Crystallization, X-ray data collection, structure determination and refinement

The initial crystallization conditions for SagA-NlpC/p60 were identified using commercial screen solutions (Molecular Dimensions) by the sitting-drop vapor-diffusion method at 18°C. The final optimized crystals were obtained using a precipitant solution consisting of 2 M ammonium sulfate and 0.1 M Bis-Tris, pH 5.5, again using the sitting-drop vapor-diffusion method at 18°C. The crystals were flash-cooled in liquid nitrogen using crystallization mother liquor without additional cryoprotectant. X-ray diffraction data were collected from a single crystal on beamline AMX at NSLS-II beamline (Brookhaven National Laboratory) to 2.4 Å resolution. The data were processed with the HKL2000 program suite (Otwinowski & Minor, 1997). Initial phase estimates and electron-density maps were obtained by molecular replacement with Phaser (McCoy et al., 2007) using the C-terminus of CwlT (PDB: 4FDY) as an initial search model in Phenix (Adams et al., 2011). Then the structure was improved by building in COOT and refinement in Phenix.
iteratively (Emsley & Cowtan, 2004). Comprehensive model validation was performed with MolProbity (V. B. Chen et al., 2010) with 97.4 / 2.6% of residues falling within the favored and allowed region of the Ramachandran plot, respectively. (data-collection and refinement statistics are summarized in Supplementary Table 5). All molecular graphics were prepared with PyMOL (The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.). Atomic coordinates and experimental structure factors have been deposited in the PDB under accession code 6B8C.

The sequence conservation analysis shown in Fig. 3 was computed using the ConSurf server (Ashkenazy, Erez, Martz, Pupko, & Ben-Tal, 2010). In brief, a multiple sequence alignment of SagA-NlpC/p60 to its closest 150 homologues was generated using the HHMER algorithm provided by ConSurf, with conservation scores plotted in PyMOL.

Docking study

The Grid-based Ligand Docking with Energetics (GLIDE) module of the Schrödinger suite was used to generate a list of poses with highest scores (Friesner et al., 2004; Halgren et al., 2004).

The docking search space was specified by setting the ligand diameter midpoint cubic box to 15 × 15 × 15 Å³, which broadly covers the whole region of the SagA-NlpC/p60 protein. The key ligand binding cysteine residues identified from previous biochemistry studies on E. faecium / E. faecalis PG digested by SagA-NlpC/p60, which showed a loss of function on mutation, were used to define the ligand recognition sites. Standard parameters were applied including van der Waals (vdW) scaling of nonpolar atoms (by 0.7) to include modest ‘‘induced fit’’ effect of ligand. The molecular docking of SagA-NlpC/p60 with PG ligands was done in a flexible and non-constrained manner, allowing the ligand to move freely over the entire volume of the grid box. All other settings were kept as default and docking simulations were performed in two steps which included initial validation of the standard precision (SP) docking algorithms to predict the most accurate binding of ligand with apo SagA-NlpC/p60 structure, then used molecular
 mechanized generalized born surface area (MM-GBSA) calculations of binding free energies of
581 top-ranked ligand poses (Lyne, Lamb, & Saeh, 2006).

582 Activation of NOD1/2 in mammalian cells
583 Human embryonic kidney 293T (HEK293T) cells were obtained from the American Type Culture
584 Collection and tested for mycoplasma contamination. HEK293T cells were cultured in
585 Dulbecco’s Modified Eagle Medium (with D-glucose, L-glutamine and sodium pyruvate)
586 supplemented with 10% fetal bovine serum. E. faecium and E. faecalis were cultured in BHI
587 medium. E. faecalis-sagA was cultured in BHI medium supplemented with 8 μg/mL
588 chloramphenicol. HEK293T cells were seeded in 24-well plates (1.5-2 × 10^5 cells/well). After 24
589 hours, the cells were transfected with plasmids expressing firefly luciferase, Renilla luciferase,
590 NOD1, (or NOD2), (PRDII-4X-luc: 50 ng/well, pRL-TK: 5 ng/well, pUNO1-hNOD1 or pUNO-
591 1-hNOD2a: 5 ng/well, lipofectamine 2000: 2.5 μL/well, total volume is 500 μL of Opti-MEM per
592 well). After 6 hours, the transfection medium was removed and replaced with fresh Opti-MEM
593 containing 50 μM of iE-DAP (NOD1 ligand) or 5 μM MDP (NOD2 ligand) and the solution was
594 incubated for 16-17 hours. Some wells were added Opti-MEM containing E. faecium, E. faecalis,
595 E. faecalis-sagA at MOI = 1-1000 (the bacteria were grown until OD_{600} reaches ~ 0.6, then
596 washed with PBS 3 times and then serial diluted in Opti-MEM). After 4 hours, the media
597 containing bacteria were removed and replaced by fresh Opti-MEM media supplemented with
598 250 μg/mL gentamicin, and the solution was incubated for additional 12-13 hours. The cells were
599 lysed and assayed for luciferase activity according to the manufacture’s protocol (Dual-
600 Luciferase Reporter Assay System, Promega).
601 Gentamicin protection assays
602 For measuring colony-forming unit (CFU), the solution was removed, and the cells were washed
603 with PBS 3 times. 250 μL of Triton X-100 (1% in PBS) was added to each well. The plates were
shaken gently for 10 min. The solution was serially diluted 10-fold, and 5 μL were spotted onto agar plates. The plates were placed in a 37 °C-incubator for about 16 h (for most bacteria) or 36 h (for *E. faecalis-sagA*) before counting colonies.

Generation of *E. faecalis*-sagA active site mutant.

E. faecalis-sagA active site mutant (AS) was generated as previously described (Rangan et al., 2016), but with these mutations C443A, H494A and H506A.

Probiotic treatment and *C. difficile* infection experiments

C57BL/6J (000664) mice were purchased from the Jackson Laboratory and maintained at the Rockefeller University animal facilities. Mice 8 weeks of age were used for experiments. Animal care and experimentation were consistent with the National Institutes of Health guidelines and approved by the Institutional Animal Care and Use Committee of the Rockefeller University. *C. difficile* infections were performed according to the previous protocol (Pedicord et al., 2016). Mice were gavaged with AMNV (4 mg ampicillin, 2 mg metronidazole, 4 mg neomycin, 2 mg vancomycin) antibiotic cocktail daily for 7 days. AMNV treatment was ceased 2 days before colonization with probiotics. The evening before colonization with probiotics, *L. plantarum* WCFS1 with the pAM401 plasmid containing either empty vector or a variant of SagA was grown in MRS supplemented with 8 μg/mL chloramphenicol at 37 °C overnight aerobically. The next day, *L. plantarum* cultures were pelleted and resuspended in sterile phosphate-buffered saline (PBS) at a concentration of 10^9 cfu/mL. Mice were colonized by oral gavage with 100 μL of sterile PBS or the *L. plantarum* suspensions. Mice were then infected with *C. difficile* 36 hrs after probiotic treatment. Two days before infection, *C. difficile* was streaked onto BHI agar supplemented (BHIS++) with 0.1 % taurocholate, 0.1 % L-cysteine, 16 μg/mL cefoxitin, and 250 μg/mL cycloserine and grown overnight at 37 °C in an anaerobic chamber (Sorg & Dineen, 2009). The following day, a single colony from the plate was inoculated into 5 ml of BHIS++
broth and incubated overnight anaerobically at 37 °C. Sterile PBS (5 ml) was added, and broth
culture tubes were then parafilled and exported from the anaerobic chamber for centrifugation at
2000g for 5 min. The tubes were returned to the anaerobic chamber, the supernatant was
removed, and the bacterial pellet was resuspended in 3 ml of sterile PBS. This suspension was
loaded into 1 ml syringes fitted with gavage needles and exported from the anaerobic chamber in
plastic bags. *C. difficile* suspensions were immediately transported to animal facilities for oral
gavage of 100 µl per mouse. Weight loss was monitored just before infection, and mice were
euthanized when they reached 80% baseline weight or when they appeared hunched or moribund,
whichever occurred first. Death was not used as an end point.

Chemical Synthesis

Compound 1 and 2 were synthesized as previous reported (Thierry Liouxa, 2005).

Compound 3

Zinc dust (4.09g, 62.5 mmol) was added to a solution of compound 1 in THF/CH$_3$O/CH$_3$OH (3.9
mL/2.6 mL/1.3 mL). The mixture was stirred at room temperature for 5.5 h. The mixture was
filtered on celite. The filtrate was concentrated by rotary evaporation. The resulting solution was
purified by silica gel column chromatography (MeOH/CH$_2$Cl$_2$ = 1.5:100 to 2:100) to yield
compound 3 as a white solid (0.799 g, mixture with compound S-1). 1H NMR (600 MHz,
CD$_3$OD): δ 8.07 (d, $J = 4.5$ Hz, 1H), 8.00 (d, $J = 7.7$ Hz, 2H), 7.94 (d, $J = 7.6$ Hz, 2H, from S-1),
7.87 (t, $J = 9.1$ Hz, 1H), 7.73 (t, $J = 7.7$ Hz, 2H, 1H from S-1), 7.63 (t, $J = 7.8$ Hz, 2H, from S-1),
7.37 (m, 15H, 4H from S-1), 7.32 (m, 9H, 4H from S-1), 5.26 (t, $J = 9.9$ Hz, 1H), 5.16 (d, $J = 2.6$
Hz, 1H), 5.08 (d, $J = 3.3$ Hz, 1H, from S-1), 5.03 (t, $J = 9.7$ Hz, 1H), 4.94 (d, $J = 3.5$ Hz, 1H),
4.72 (m, 4H, 2H from S-1), 4.62 (m, 5H, 2H from S-1), 4.53 (m, 4H, 2H from S-1), 4.45 (m, 3H,
2H from S-1), 4.35 (dd, $J = 12.5$, 3.8 Hz, 1H), 4.14 (dd, $J = 10.7$, 3.6 Hz, 1H), 4.03 (t, $J = 10.0$
Hz, 3H), 3.94 (d, $J = 5.6$ Hz, 1H), 3.75 (m, 7H, 4H from S-1), 3.66 (m, 7H, 3H from S-1), 3.53 (t,
$J = 9.2$ Hz, 1H from S-1), 3.44 (d, $J = 10.3$ Hz, 1H), 2.05 (s, 3H), 2.04 (s, 3H), 2.00 (s, 3H), 1.96 (s, 3H, from S-1), 1.93 (s, 3H), 1.47 (d, $J = 6.9$ Hz, 3H), 1.24 (d, $J = 7.0$ Hz, 3H from S-1), 1.12 (d, $J = 7.2$ Hz, 3H). 1H NMR (600 MHz, CD$_3$OD): δ 175.20, 174.54 (from S-1), 172.20, 172.03 (from S-1), 171.96 (from S-1), 170.63, 170.30, 170.00, 139.92, 139.42 (from S-1), 138.42, 138.30 (from S-1), 138.06, 137.50 (from S-1), 137.11, 133.94 (from S-1), 133.86, 129.29, 129.21 (from S-1), 128.17, 128.10 (from S-1), 128.02 (from S-1), 127.98 (from S-1), 127.82 (from S-1), 127.78, 127.69, 127.50, 127.47 (from S-1), 127.41 (from S-1), 127.36, 127.26 (from S-1), 99.19, 96.14, 95.90 (from S-1), 95.81, 78.39 (from S-1), 75.75, 75.39, 75.34, 75.31, 75.20 (from S-1), 74.88, 73.26, 73.12 (from S-1), 72.73, 72.32, 71.92, 71.49 (from S-1), 71.27, 70.86, 70.72, 69.63, 69.47, 69.16 (from S-1), 69.12 (from S-1), 68.96, 68.79, 68.52, 67.82, 67.50, 61.17, 58.33, 58.08 (from S-1), 54.93, 54.38, 54.28 (from S-1), 54.08, 53.99, 53.49 (from S-1), 51.62, 21.42 (from S-1), 20.99, 19.34, 19.21, 19.17, 16.68. ESI-MS [M+H$^+$]: m/z calc. for C$_{47}$H$_{59}$N$_2$O$_{18}$S$^+$: 971.3478; found: 971.3476.
Compound 4

DBU (0.12 mL, 0.851 mmol) was added to a solution of compound 3 (0.799 g, 0.823 mmol, max.) in CH$_2$Cl$_2$ (15 mL) at 0 °C. The mixture was stirred at room temperature for 45 min. 1M HCl$_{aq}$ (40 mL) was added to quench the reaction. The mixture was extracted with CH$_2$Cl$_2$ (2 × 25 mL) and the combined organic layers were dried with MgSO$_4$ and concentrated by rotary evaporation. The resulting solid was washed with Et$_2$O several times and dried in vacuum to yield compound 4 as a white solid (0.516 mg, 38% over three steps). Crude compound 4 was used in the next step without further purification. 1H NMR (600 MHz, CD$_3$OD): δ 7.45 (d, $J = 7.4$ Hz, 2H), 7.41 (t, $J = 7.5$ Hz, 2H), 7.33 (m, 5H), 7.29 (m, 1H), 5.32 (t, $J = 9.8$ Hz, 1H), 5.23 (d, $J = 3.1$ Hz, 1H), 4.97 (t, $J = 9.6$ Hz, 1H), 4.81 (d, $J = 8.3$ Hz, 1H), 4.68 (m, 2H), 4.61 (d, $J = 12.2$ Hz, 1H), 4.52 (d, $J = 12.2$ Hz, 1H), 4.33 (dd, $J = 12.5$, 4.0 Hz, 1H), 4.06 (t, $J = 9.3$ Hz, 1H), 3.99 (d, $J = 12.3$ Hz, 1H), 3.74 (m, 2H), 3.67 (m, 3H), 3.45 (d, $J = 10.3$ Hz, 1H), 2.01 (s, 6H), 2.01 (s, 3H), 1.97 (s, 3H), 1.90 (s, 3H), 1.47 (d, $J = 7.0$ Hz, 3H). 13C NMR (600 MHz, CD$_3$OD): δ 177.91, 172.24, 171.94, 170.76, 170.37, 169.88, 138.44, 137.63, 128.15, 127.97, 127.62, 127.53, 127.45, 127.41, 99.19, 95.66, 76.02, 75.36, 75.20, 72.73, 71.97, 71.37, 71.00, 69.53, 68.71, 67.84, 61.32, 55.21, 54.40, 21.39, 21.26, 19.24, 19.12, 17.69. ESI-MS [M+H$^+$]: m/z calc. for C$_{39}$H$_{51}$N$_2$O$_{16}$+: 803.3233; found: 803.3288.
N-hydroxysuccinimide (0.107 g, 0.929 mmol) and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (0.183 g, 0.955 mmol) were added to a solution of compound 4 (0.516 g, 0.643 mmol) in DMF (12 mL). The mixture was stirred at room temperature for 16 h. The solvent was removed under vacuum. H$_2$O (20 mL) was added. The mixture was extracted with EtOAc (25 mL) and the organic layer was dried with MgSO$_4$ and concentrated by rotary evaporation. The resulting solution was purified by silica gel column chromatography (MeOH/CHCl$_3$ = 1:100 to 2:100) to yield compound 5 as a white solid (0.294 g, 51%).

1H NMR (600 MHz, CDCl$_3$): δ 7.53 (m, 2H), 7.47 (m, 3H), 7.36 (d, $J = 4.2$ Hz, 4H), 7.31 (m, 1H), 6.95 (d, $J = 8.1$ Hz, 1H), 5.02 (m, 3H), 4.89 (m, 3H), 4.69 (d, $J = 12$ Hz, 1H), 4.55 (d, $J = 12.6$ Hz, 1H), 4.40 (m, 1H), 4.12 (m, 1H), 4.02 (d, $J = 10.2$ Hz, 2H), 3.78 (m, 2H), 3.67 (m, 1H), 3.59 (dd, $J = 10.9, 2.3$ Hz, 1H), 3.47 (m, 1H), 2.91 (s, 4H), 2.06 (s, 3H), 2.05 (s, 3H), 2.02 (s, 3H), 1.92 (s, 3H), 1.78 (s, 3H), 1.56 (d, $J = 6.6$ Hz, 3H).
\(\text{\(^{13}\)C NMR (600 MHz, CDCl}_3\): } \delta 171.69, 170.68, 170.58, 170.32, 169.67, 169.38, 137.42, 137.29, 129.06, 128.96, 128.35, 127.77, 99.74, 96.54, 74.22, 73.85, 72.71, 71.64, 70.12, 69.83, 68.14, 67.61, 61.72, 54.85, 52.73, 25.63, 23.06, 22.59, 20.62, 18.08.\) ESI-MS [M+H\(^+\): \(m/z\) calc. for C\(_{43}\)H\(_{54}\)N\(_3\)O\(_18\)S\(^-\): 900.3397; found: 900.3381.

Compound 6

TFA (5 mL) was added to a solution of compound 2 in CH\(_2\)Cl\(_2\) (5 mL). The mixture was stirred at room temperature for 2 h. The solvent was concentrated under vacuum. The resulting oil was dissolved in DMF (3 mL). DIEA (0.3 mL, 1.72 mmol) was added to the DMF solution. The mixture was transferred to a flask containing compound 5 (0.294 g, 0.327 mmol). The mixture was stirred at room temperature for 16 h. DIEA (0.1 mL, 0.574 mmol) was added to the solution. The mixture was stirred at room temperature for 250 min. The solvent was removed under vacuum. H\(_2\)O (20 mL) and 1M HCl\(_{(aq)}\) (20 mL) were added. The mixture was extracted with
CH₂Cl₂ (2 × 25 mL) and the combined organic layers were dried with MgSO₄ and concentrated by rotary evaporation. The resulting solution was purified by silica gel column chromatography (MeOH/CHCl₃ = 0.4/9.6) to yield compound 6 as a white solid (0.116 g, 33%). ¹H NMR (600 MHz, CDCl₃): δ 7.51 (m, 2H), 7.48 (m, 1H), 7.44 (m, 2H), 7.37 (m, 6H), 7.31 (m, 3H), 7.27 (d, J = 7.6 Hz, 1H), 6.88 (d, J = 5.7 Hz, 1H), 6.82 (s, 1H), 5.81 (s, 1H), 5.13 (m, 3H), 5.01 (m, 2H), 4.89 (t, J = 10.0 Hz, 1H), 4.85 (d, J = 11.9 Hz, 1H), 4.65 (d, J = 12.4 Hz, 1H), 4.53 (d, J = 11.9 Hz, 1H), 4.41 (d, J = 11.9 Hz, 1H), 4.37 (m, 3H), 4.28 (dd, J = 12.4, 4.7 Hz, 1H), 4.24 (t, J = 6.9 Hz, 1H), 4.01 (m, 2H), 3.93 (m, 2H), 3.65 (d, J = 10.0 Hz, 1H), 3.58 (dd, J = 10.9, 2.8 Hz, 1H), 3.46 (m, 3H), 2.55 (m, 1H), 2.37 (m, 1H), 2.21 (m, 1H), 2.06 (s, 3H), 2.05 (s, 3H), 2.02 (s, 3H), 1.99 (m, 1H), 1.94 (s, 3H), 1.80 (s, 3H), 1.42 (d, J = 7.1 Hz, 3H), 1.38 (d, J = 6.7 Hz, 3H). ¹³C NMR (600 MHz, CDCl₃): δ 174.76, 173.74, 173.50, 172.63, 170.93, 170.89, 170.84, 170.54, 169.40, 137.62, 137.08, 135.66, 128.94, 128.82, 128.62, 128.56, 128.37, 128.27, 128.08, 99.45, 96.68, 76.49, 75.10, 73.80, 72.60, 71.58, 70.26, 70.07, 68.40, 67.76, 66.62, 61.70, 54.45, 53.82, 52.67, 49.81, 30.73, 26.35, 23.16, 23.05, 20.72, 20.64, 20.62, 18.72, 16.92. ESI-MS [M+H⁺]: m/z calc. for C₅₄H₄₇N₅O₁₉⁺: 1092.4660; found: 1092.4676.
10% NaOH (aq) (0.2 mL, 0.5 mmol) was added to a suspension compound 6 in 1,4-dioxane/MeOH/H$_2$O (1 mL/0.9 mL/0.1 mL). The mixture was stirred at room temperature for 80 min. H$_2$O (3 mL) and 1M HCl (aq) (0.6 mL) were added. The mixture was lyophilized for 24 h. The resulting residue was dissolved in MeOH (3 mL). 10% palladium on carbon (22 mg) was added to the solution. The mixture was stirred under 1 atm. of H$_2$ at room temperature for 16 h. After filtration, the solution was concentrated by rotary evaporation. The resulting solution was purified by reversed-phase C-18 HPLC (gradient 0-15%, 0.1% TFA in H$_2$O/CH$_3$CN, over 50 min) to yield compound GlcNAc-MurNAc-L-Ala-D-isoGln as a white solid (14.6 mg, 20%). 1H NMR (600 MHz, CD$_3$OD): δ 5.27 (d, $J = 3$ Hz, 1H-α), 4.66 (d, $J = 6.6$ Hz, 1H-β), 4.60-4.45 (m, 3H), 4.37 (d, $J = 7.2$ Hz, 1H), 3.92 (m, 2H), 3.78 (m, 3H), 3.74 (m, 3H), 3.50 (m, 1H), 3.25 (m, 1H), 2.45-
2.20 (m, 4H) 2.02 (s, 3H), 1.98 (s, 3H), 1.45 (d, $J = 7.2$ Hz, 1H), 1.43 (d, $J = 6.6$ Hz, 3H). 13C

NMR (600 MHz, CD$_3$OD): δ 176.27, 175.25, 173.72, 173.10, 172.53, 172.25, 100.59, 96.23, 90.54, 78.36, 76.89, 76.68, 75.84, 75.53, 75.01, 74.21, 71.31, 61.76, 60.12, 56.36, 54.35, 51.77, 49.50, 31.22, 27.03, 21.63, 21.47, 18.14, 16.52. ESI-MS [M+H$^+$]: m/z calc. for $C_{27}H_{46}N_5O_{16}$:

696.2934; found: 696.2918.
Acknowledgments

The authors thank Joseph P. Fernandez, Brian D. Dill and Henrik Molina for assistance with peptidoglycan analysis (The Rockefeller University Proteomics Resource Center). The authors also thank Uhn-Soo Cho (University of Michigan, Ann Arbor), Yehuda Goldgur (MSKCC) for assistance in SagA-NlpC/p60 structural determination. Nadine Soplop and Kunihiro Uryu (Electron Microscopy Resource Center at The Rockefeller University) helped for electron microscopy studies. We thank Hang lab members for helpful comments on the manuscript. We thank Daniel Mucida (Rockefeller University) for supporting this study and feedback on manuscript. B.K. was supported by Helmsley postdoctoral fellowship. Y.C.W was a Cancer Research Institute Irvington Fellow supported by Cancer Research Institute. C. W. H. acknowledges support from NIH-NICCH F32 AT010087-01A1 grant. J.E. and K.R. were supported by The Rockefeller University Graduate Program. The project described was also supported in part by grant UL1 TR0018663 from the National Center for Advancing Translational Sciences (NCATS, National Institutes of Health (NIH) Clinical and Translational Science Award (CTSA) program. It was supported by Award Number S10RR031855 from the National Center for Research Resources. The use of the formulator and the phoenix robots in the Rockefeller University Structural Biology Resource Center was made possible by Grant Number 1S10RR027037-01 from the National Center for Research Resources of the NIH. The beam line AMX of the NSLS-II by Brookhaven National Laboratory was supported by the US Department of Energy under Contract No. DE-SC0012704. H.C.H. acknowledges support from NIH-NIGMS R01 GM103593 grant and Robertson Therapeutic Fund.

Competing financial interest

The authors declare no competing financial interests.
References

Figure 1 | SagA expression alters *E. faecalis* growth and morphology. (a) Expression of SagA in *E. faecium* (*Ef*), *E. faecalis* (*Ef*), and *E. faecalis*-sagA (*Ef*-sagA) supernatant and cell pellet by anti-His₆ and anti-SagA blots. (b) Growth curve of *E. faecium*, *E. faecalis*, and *E. faecalis*-sagA. The error bars indicate standard deviation of triplicate measurements. Data was analyzed using a two-tailed t-test. *P ≤ 0.05; **P ≤ 0.01. (c) Electron microscopy of *Enterococci* strains. Cells for microscopy were grown in BHI medium at 37 °C and collected in exponential growth phase. Top Panel: EM of *E. faecium*, *E. faecalis* and *E. faecalis*-sagA samples. Scale bars - 2 μm. Images of the *E. faecalis*-sagA revealed size differences from normal growth caused by the presence of the sagA expression. Bottom panel: Representative higher magnification images of each cell. Scale bars - 200 nm. The arrows indicate the morphological changes observed in the cell wall structure of *E. faecalis*-sagA. (d) 50 cells from *E. faecium*, *E. faecalis* and *E. faecalis*-sagA were randomly selected. Width was measured in each condition. Data was analyzed using an unpaired t-test with Welch’s correction; n = 50 per group. *P value < 0.0001.

Figure 2 | Analysis *Enterococci* peptidoglycan composition and activation of intracellular peptidoglycan pattern recognition receptors. (a) LC-MS analysis of peptidoglycan isolated from *E. faecium*, *E. faecalis*, and *E. faecalis*-sagA digested by mutanolysin. Numbers correspond to each muropeptide from *E. faecium*, *E. faecalis*, and *E. faecalis*-sagA. Muropeptides that are significantly decreased in *E. faecalis*-sagA compared to *E. faecalis* are marked with asterisks. Arrow indicates endogenous G-MDP peak from isolated *E. faecium* peptidoglycan. (b) Analysis of *E. faecium* (MOI = 1), *E. faecalis*, and *E. faecalis*-sagA (MOI = 1, 10, 100, 1000) activation of NOD1- and NOD2-expressing NF-κB reporter HEK293T cells with iE-DAP (50 μM, NOD1 ligand, light grey), MurNAc-L-Ala-D-isoGln (5 μM, MDP, NOD2 ligand, dark grey). (c) *E. faecium* (MOI = 1), *E. faecalis*, and *E. faecalis*-sagA (MOI = 1, 10, 100, 1000) internalization in HEK293T cells using gentamycin protection / CFU assay. For b and c, data are presented as means ± s.d.; n = 3 per group. Data was analyzed using a two-tailed t-test. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.005; ****P ≤ 0.0001.

Figure 3 | X-ray structure analysis of SagA-NlpC/p60 domain. (a) Schematic of SagA protein architecture, as predicted by Signal P, Jpred and BLASTP analysis. (b) Gel-filtration data of purified SagA-NlpC/p60. (c) Ribbon diagram of the C-terminal domain of SagA with secondary-structure elements labeled. (d) Surface representation of the SagA-NlpC/p60 (PDB entry: 6B8C). Catalytic triad of Cys443 (yellow), His494 (blue), His506 (blue), Trp433 (green), and Trp462 (green) are highlighted. (e) The 2Fo-Fc electron density (contoured at 1.5σ) of catalytic triad (Cys443, His494, and His506) is shown as a light blue mesh. (f) Electrostatic potentials of SagA-NlpC/p60. The color is scaled from −2 to 2 kT/e (blue, positive electrostatic potential; red, negative electrostatic potential) using PyMOL with the APBS tool. The surface shows potential glycan binding site and substrate binding groove, which can be proposed to bind to peptide from peptidoglycan fragment. (g) The conserved surface representation of SagA-NlpC/p60 is color coded according to amino acid conservation based on comparison to other homologs with sequence identities of 35 to 95 % compared to SagA-NlpC/p60. Inlet box: Superimposition of the catalytic triad (Cys-His-His(Glu)) of SagA-NlpC/p60 with other structurally characterized peptidoglycan hydroases. Color-coded are SagA-NlpC/p60 from *Enterococcus faecium* (cyan, PDB entry: 6B8C) with YkIC from *Bacillus cereus* (green, PDB entry: 3H41), NpPCP from *Nostoc punctiforme* (yellow, PDB entry: 2EVR), AvPCP from *Anabaena variabilis* (gray, PDB entry: 2HBW), CwlT from *Staphylococcus aureus* (pink, PDB entry: 4FDY), Spr from *Escherichia coli* (magenta, PDB entry: 2K1G), RipA from *Mycobacterium tuberculosis* (blue, PDB entry: 3NE0), and LysM from *Thermus thermophilus* (orange, PDB entry: 4XCM).
with purified peptidoglycan fragments. (a) Overlay of potential substrate binding site of SagA-
NlpC/p60 with CwlT (magenta). Positive charge residues are colored as light grey, aromatic (hydrophobic) residues as green, and catalytic cysteine residue as yellow. Predicted
location of substrate-binding site is marked by circles. (b) Binding of peptidoglycan fragment
(GlcNAc-MurNAc-tetrapeptide; L-Ala-D-isoGln-L-Lys-D-Ala) to SagA was modeled with space-
filling representation using Glide (Schrödinger, LLC, New York, NY). Catalytic triad of Cys443
(yellow), His494 (blue), His506 (blue), Trp433 (green), and Trp462 (green) are highlighted. (c)
Closer view of docked peptidoglycan fragment to SagA active site. (d) LC-MS analysis of
reaction of isolated muropeptide purified from E. faecium by digesting with purified NlpC/p60
domain in time-dependent manner. Peak 1, purified crosslinked peptidoglycan (Disaccharide-
tetrapeptide-disaccharide-tripeptide); 2, GlcNAc-MurNAc-L-Ala-D-isoGln-L-Lys-crosslinked-D-
Ala-L-Lys heptapeptide product (GlcNAc-M7P); 3, GlcNAc-MurNAc-L-Ala-D-isoGln (GlcNAc-
M7D). Products were confirmed by mass spectrometry. (e) Specific activity plot of SagA-
NlpC/p60 with disaccharide-dipeptide. Specific activity was determined by quantification of
product peak area using LC-MS. Data was obtained as the mean ± S.D. of the data from three
independent experiments. (f) In vitro studies suggest SagA-NlpC/p60 domain cleaves crosslinked
peptidoglycan fragments to generate GlcNAc-MDP and GlcNAc-M7P.

Figure 5 | SagA activity generates small muropeptides which activate NOD2 signaling and
can enhance L. plantarum probiotic activity against C. difficile infection in vivo. (a) HEK-
Blue cells were treated with iE-DAP (50 μM, NOD1 ligand, light grey), MurNAc-L-Ala-D-isoGln
(5 μM, MDP, NOD2 ligand, dark grey), synthetic GlcNAc-MurNAc-L-Ala-D-isoGln (5 μM, syn
GlcNAc-MDP, cyan), crosslinked peptidoglycan fragment (disaccharide-tetrapeptide-
disaccharide-tripeptide, purple) and products (GlcNAc-MurNAc-L-Ala-D-isoGln: GlcNAc-MDP
or GlcNAc-MurNAc-L-Ala-D-isoGln-L-Lys-L-Lys-D-Ala: GlcNAc-M7P) at 5 μM for 12 hours.
The measured firefly luciferase activity was divided by Renilla luciferase activity. The plotted
values are relative ratios normalized to cells without ligand treatment, valued as 1. Data are
shown as the mean ± SD from triplicate values. Data was analyzed using two-tailed t-test. *P ≤
0.05; **P ≤ 0.01; ***P ≤ 0.005; ****P ≤ 0.001. (b) NOD2 activity in HEK-Blue cells with NF-
κB activation after stimulation of cells with the MurNAc-L-Ala-D-isoGln (MDP), synthetic
GlcNAc-MurNAc-L-Ala-D-isoGln-L-Lys-L-Lys-D-Ala, and purified crosslinked peptidoglycan
fragment at different concentrations (0.05, 0.1, 0.5, 1, 2.5, 5 μM). Two-way ANOVA with a
Sidak’s posttest comparing buffer groups to MDP, syn GlcNAc-MDP, GlcNAc-MDP and
GlcNAc-MDP to GlcNAc-M7P, crosslinked peptidoglycan fragment groups. Buffer shown as a
negative control. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.005; ****P ≤ 0.001 for all analyses. (c)
Expression of wild-type SagA and mutants in L. plantarum cell pellet and supernatant by anti-
Hisα western blot. (d) Mice were given antibiotics (ampicillin, metronidazole, neomycin,
vancomycin (AMNV) for 7d and colonized with 10⁸ CFU of indicated bacteria 36 hours prior to
oral infection with 10⁶ C. difficile. Pooled data from 3 independent experiments, n = 9 - 10 mice /
group. Survival curve of C. difficile infected mice. Log-rank analysis, P-value shown comparing
L. plantarum expressing SagA, compared to vector control, C443A, signal sequence mutant
(ΔSS), respectively. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001 for all analyses.

Figure 6 | E. faecium and SagA generate small muropeptides that activate NOD2 signaling
to inhibit enteric pathogens. Endogenous GlcNAc-MDP from E. faecium can stimulate NOD2
directly and secreted peptidoglycan hydrolase SagA from E. faecium can also generate small
muropeptides that can activate NOD2. Activated NOD2 controls immunity and barrier function in
the gut to protect the host against enteric pathogens.
Figure 1 - figure supplement 1. Western blot analysis of anti-SagA polyclonal sera

Figure 2 - figure supplement 1. LC-MS analysis of mutanolysin-digested peptidoglycan fragments from E. faecium, E. faecalis, and E. faecalis-sagA. (a) Muropeptides were reduced by sodium borohydride and separated by HPLC on a 3-µm ODS-Hypersil column (2.1 µm, 2.1 x 150 mm), using a gradient of methanol (from 0 to 30% in the presence of 0.1% TFA in 60 min) at a flow rate of 0.2 ml/min. AU, absorbance unit. Their identity is indicated in Supplementary Table 1 and 2. (b) Comparative analysis of muropeptide abundance from E. faecalis-sagA (Efs-sagA) PG compared to E. faecalis (Efs) PG. Relative abundances are calculated by taking averaged area under curve from extracted ion chromatograms and normalized to the most abundant peak (peak number 10), n = 3. Overall PG composition by relative abundance between E. faecalis and E. faecalis-sagA shows significant decrease in muropeptides with expression of SagA.

Figure 3 – figure supplement 1. Multiple sequence alignment of C-terminal domains from different Enterococcus faecalis (Ef) strains. SagA homologs were identified using BLAST protein searches through the Integrated Microbial Genomes & Microbiomes (IMG/M) system (I. A. Chen et al., 2019) based on the SagA primary sequence from E. faecium Com15. The homologous sequences in the different E. faecalis strains were retrieved and their C-terminal domains were predicted using InterPro. MUSCLE alignment of the corresponding amino acid sequences of these domains was done using the rMSA package with default parameters. The alignment was edited in LaTeX with the TexShade style to highlight conserved and similar residues, and generate a % identity / % similarity table. Residues with ≥ 70% conservation are highlighted in dark gray, and similar residues are highlighted in light grey. Conserved tryptophan residues are highlighted in green, and cysteine and histidine residues in the catalytic triad are highlighted in yellow and cyan, respectively.

Figure 3 – figure supplement 2. Multiple sequence alignment of NlpC/p60 domains from different Enterococcus faecium (Ef) strains. SagA homologs were identified using BLAST protein searches through the Integrated Microbial Genomes & Microbiomes (IMG/M) system (I. A. Chen et al., 2019) based on the SagA primary sequence from E. faecium Com15. The homologous sequences in the different E. faecium strains were retrieved and their NlpC/p60 domains were predicted using InterPro. MUSCLE alignment of the corresponding amino acid sequences of these domains was done using the R MSA package with default parameters. The alignment was edited in LaTeX with the TexShade style to highlight conserved and similar residues, and generate a % identity / % similarity table. Residues with ≥ 70% conservation are highlighted in dark gray, and similar residues are highlighted in light grey. Conserved tryptophan residues are highlighted in green, and cysteine and histidine residues in the catalytic triad are highlighted in yellow and cyan, respectively.

Figure 3 - figure supplement 3. Characterization of peptidoglycan hydrolase activity of SagA constructs. (a) Schematic representation of SagA and SagA-NlpC/p60 domain. (b) Stain-free SDS-PAGE of full-length SagA and NlpC/p60 construct. (c) ANTS visualization of isolated peptidoglycan from E. faecium treated with buffer or purified SagA-NlpC/p60 (intact E. faecium) and peptidoglycan treated with mutanolysin followed by buffer or purified SagA-NlpC/p60 (predigested E. faecium). Muropeptides were isolated as previously described (Mugunthan, Sriram, Yogeeswari, & Ravindranathan Kartha, 2011), dried, labeled with ANTS, separated by native PAGE and then visualized by UV. ANTS-labeled synthetic fragments MDP (MurNAc-L-Ala-D-iGln), GlcNAc-MDP (GlcNAc-MurNAc-L-Ala-D-iGln) were analyzed in parallel for comparison. Bold asterisks indicate product formation from overnight incubation of peptidoglycan digested with purified SagA construct. (d) ANTS visualization of isolated
peptidoglycan from *E. faecium* (*Ef*m), *E. faecalis* (*Ef*s) and *E. coli* (*Ec*) treated with mutanolysin
followed by each purified SagA construct (SagA-FL: full-length SagA), NlpC/p60: truncated
NlpC/p60 domain) grown from *E. coli*. (e) LC-MS analysis of peptidoglycan isolated from *E.
faecalis* digested by mutanolysin followed by buffer, purified full-length SagA, full-length SagA-
C443A, NlpC/p60 domain, and NlpC/p60-C443A. Enzymatic products (a,b,c,d,e) were generated
only after incubation with purified full-length SagA and purified NlpC/p60 domain as shown in
Supplementary Table 4.

Figure 3 - figure supplement 4. Alignment of SagA-NlpC/p60 domain with other homologs.
Superimposition of the X-ray structure of the NlpC/p60 domain from SagA-NlpC/p60 from
Enterobacter cloacae (cyan, PDB entry: 6B8C) with YkIC from *Bacillus cereus* (green, PDB
entry: 3H41), NpPCP from *Nostoc punctiforme* (yellow, PDB entry: 2EV3), AvPCP from
Anabaena variabilis (gray, PDB entry: 2HBW), CwIT from *Staphylococcus aureus* (pink, PDB
entry: 4FDY), Spr from *Escherichia coli* (magenta, PDB entry: 2K1G), RipA from
Mycobacterium tuberculosis (blue, PDB entry: 3NE0), and LysM from *Thermus thermophilus*
(orange, PDB entry: 4XCM).

Figure 4 - figure supplement 1. Model of peptidoglycan fragment by SagA. (a) Binding of
peptidoglycan fragment (tetrapeptide: L-Ala-D-isoGln-L-Lys-D-Ala) to SagA was modeled with
space-filling representation using Glide (Schrödinger, LLC, New York, NY). Catalytic triad of
Cys443 (yellow), His494 (blue), His506 (blue), Trp433 (green), and Trp462 (green) are
highlighted. (b) Closer view of docked peptidoglycan fragment to SagA active site.

**Figure 4 - figure supplement 2. Activity of SagA-NlpC/p60 mutants on mutanolysin-
digested peptidoglycan from *E. faecalis*.** (a) Stain-Free (Bio-Rad) SDS-PAGE of SagA-
NlpC/p60 domain, NlpC/p60-C443A, NlpC/p60-W433A, NlpC/p60-W462A, and NlpC/p60-
W433A/W462A constructs. (b) ANTS visualization of peptidoglycan treated with mutanolysin
followed by buffer or purified SagA-NlpC/p60 constructs (predigested *E. faecalis*). Bold asterisks
indicate product formation from overnight incubation of peptidoglycan digested with purified
SagA constructs. (c) LC-MS analysis of isolated peptidoglycan from *E. faecalis* were digested
with mutanolysin, followed by incubating with buffer, NlpC/p60, C443A, W433A, W462A, and
W433A/W462A mutants at 37 °C for 16 hr. Enzymatic products (a,b,c,d, and e) from incubation
of *E. faecalis* peptidoglycan by purified NlpC/p60 and NlpC/p60-W462A mutant were observed
as shown in Supplementary table 4.

**Figure 4 - figure supplement 3. Analysis of SagA-NlpC/p60 with purified peptidoglycan
fragments.** (a-d) Isolated muropeptides from *E. faecium* were digested with buffer, NlpC/p60-
C443A domain, and NlpC/p60 domain at 37 °C for 1 hr. Tested substrates are as follows: (a)
purified GlcNAc-MurNAc-L-Ala-D-isoGln-L-Lys (Di-tri); (b) purified GlcNAc-MurNAc-L-Ala-
D-isoGln-L-Lys-D-Ala (Di-tetra); (c) purified GlcNAc-MurNAc-L-Ala-D-isoGln-L-Lys-D-Ala-D-
Ala (Di-penta); (d) purified GlcNAc-MurNAc-L-Ala-D-isoGln-L-Lys-D-Ala-D-isoGln-L-Lys-
crosslinked-GlcNAc-MurNAc-L-Ala-D-isoGln-L-Lys (Di-tetra-Di-tri). Arrow indicates the appearance
of product (GlcNAc-MurNAc-L-Ala-D-isoGln) after incubation with purified NlpC/p60 domain.
Products were confirmed by mass spectrometry.

**Figure 4 - figure supplement 4. LC-MS analysis of SagA-NlpC/p60 activity on mutanolysin-
digested peptidoglycan from *E. faecium* (a) LC-MS analysis of peptidoglycan isolated from *E.
faecium* digested by mutanolysin followed by purified NlpC/p60 domain or NlpC/p60-C443A.
Arrow indicates the increased abundance of peak, which corresponding to GlcNAc-MurNAc-L-
Ala-D-isoGln, after incubation with purified NlpC/p60 domain. Numbers in peak are annotated in
Supplementary Table 1. (b) ESI-MS analysis of indicated arrow from **Figure 4 - figure

Figure 5 - figure supplement 1. Schematic of GlcNAc-MurNAc-L-Ala-D-isoGln (GlcNAc-MurNAc-dipeptide) synthesis. Reagents and conditions: (a) Zn, THF/Ag2O/AcOH, RT, 5.5 h (b) DBU, CH2Cl2, 0 °C, 45 min, 38% over three steps. (c) NHS, EDC, DMF, RT, 16 h, 51%. (d) (i) 2, TFA, CH2Cl2, RT, 2 h. (ii) 5, DIEA, DMF, RT, 16 h, 33%. (e) (i) NaOH(aq), 1,4-dioxane/MeOH/H2O, RT, 80 min. (ii) H2, 10% Pd/C, RT, 16 h, 20% for two steps.

Figure 5 - figure supplement 2. Western blot analysis of E. faecalis-sagA active site mutant. (a) Stain-free staining and anti-His6 western blot of culture supernatants from different E. faecalis clones expressing plasmid-encoded active site mutant (C443A, H494A and H506A) or SagA-His6. (b) Coomassie-blue staining and anti-His6 western blot of culture supernatants (Sup.) and cell lysates from E. faecalis expressing chromosomally-encoded active site mutant (C443A, H494A and H506A) or SagA-His6. SagA is mostly secreted, while active site mutant is expressed and secreted at very low or undetectable levels. Wild type E. faecalis (wt) is shown as a control.

Figure 5 - figure supplement 3. LC-MS analysis of mutanolysin-digested peptidoglycan fragments from L. plantarum. LC-MS analysis of mutanolysin-digested peptidoglycan fragments from L. plantarum-vector, L. plantarum-SagA, L. plantarum-C443A, and L. plantarum-ΔSS.

Figure 5 - figure supplement 4. Individual weight loss of antibiotic-treated mice against C. difficile infection in vivo. Mice were given AMNV for 7d and colonized with 10⁶ CFU of indicated bacteria 36 hours prior to oral infection with 10⁶ C. difficile. Pooled data from 3 independent experiments, n = 9-10 mice/group. Weight loss of mice post infection with C. difficile. L. plantarum expressing SagA, C443A and signal sequence mutant compared to vector control, respectively.

Supplementary Table 1. Molecular mass and composition of muropeptides from E. faecium. a. Peak numbers refer to Figure 2-b. b. GM, disaccharide (GlcNAc-MurNAc); 2GM, disaccharide-disaccharide (GlcNAc-MurNAc-GlcNAc-MurNAc); 3GM, disaccharide-disaccharide-disaccharide (GlcNAc-MurNAc-GlcNAc-MurNAc-GlcNAc-MurNAc); GM-Tri, disaccharide tripeptide (L-Ala-D-iGln-L-Lys); GM-Tetra, disaccharide tetrapeptide (L-Ala-D-iGln-L-Lys-D-Ala); GM-Penta, disaccharide pentapeptide (L-Ala-D-iGln-L-Lys-D-Ala -D-Ala).

Supplementary Table 2. Molecular mass and composition of muropeptides from E. faecalis and E. faecalis-sagA. a. Peak numbers refer to Figure 2-b. b. GM, disaccharide (GlcNAc-MurNAc); 2GM, disaccharide-disaccharide (GlcNAc-MurNAc-GlcNAc-MurNAc); 3GM, disaccharide-disaccharide-disaccharide (GlcNAc-MurNAc-GlcNAc-MurNAc-GlcNAc-MurNAc); GM-Tri, disaccharide tripeptide (L-Ala-D-iGln-L-Lys); GM-Tetra, disaccharide tetrapeptide (L-Ala-D-iGln-L-Lys-D-Ala); GM-Penta, disaccharide pentapeptide (L-Ala-D-iGln-L-Lys-D-Ala -D-Ala). c. ND: Precise structure unknown. d. The assignment of the amide and the hydroxyl functions to either peptide stem is arbitrary.

Supplementary Table 3. List of genes that have synonymous and non-synonymous mutations in E. faecalis-sagA compared with E. faecalis. All sequencing data are available
from GenBank under accession number CP025022, CP025020, and CP025021 for Enterococcus faecium Com15, Enterococcus faecalis OG1RF, and Enterococcus faecalis OG1RF-sagA.

Supplementary Table 4. Molecular mass and composition of enzymatic products from incubation of E. faecalis PG with purified SagA-NlpC/p60 domain. a. Peak numbers refer to Supplementary Figure 5e. b. GM, disaccharide (GlcNAc-MurNAc); GM-di, disaccharide dipeptide (L-Ala-D-iGln); GM-Tri, disaccharide tripeptide (L-Ala-D-iGln-L-Lys); GM-Tetra, disaccharide tetrapeptide (L-Ala-D-iGln-L-Lys-D-Ala).

Supplementary Table 5. Crystallographic statistics. a One crystal was used to determine structure. b Values in parentheses are for highest resolution shell.

Supplementary Table 6. Structural comparisons of SagA-NlpC/p60 domain with structurally similar homologs determined by DALI server. The structural alignment was performed by the DALI server (Holm & Sander, 1995). For structures with multiple chains/models, only results for the first structure with the highest Z-score are shown. No. of residues: the number of residues present in the model used for comparison; Seq id: percentage sequence identity of the pairwise structural alignment.

Supplementary Table 7. Predicted binding free energies of highest-scoring poses of docked GlcNAc-MurNAc-L-Ala-D-iGln-L-Lys-D-Ala as generated with MM-GBSA. MM-GBSA calculations were carried out using the Prime_MM-GBSA utility.
Figure a: SDS-PAGE images of supernatant (sup) and pellet (pellet) samples containing Efm, Efs, and Efs-sagA showing protein bands at various molecular weights.

Figure b: OD600 graph showing time (hr) on the x-axis and OD600 on the y-axis for Efm, Efs, and Efs-sagA.

Figure c: Microscopy images of Efm, Efs, and Efs-sagA samples at different magnifications.

Figure d: Bar graph showing width in µm for Efm, Efs, and Efs-sagA with significance markers.

Legend: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
Relative Abundance

NL: 5.00E6
Base Peak F: ms MS
ms184387xl_byungchui_hang_a-

NL: 5.00E6
Base Peak F: ms MS
ms184387xl_byun_chui_hang_a-

Time (min) vs. Relative Abundance

GlcNAc-MDP (µM)

Crosslinked PG

SagA-NlpC /p60

Crosslinked peptidoglycan

GlcNAc-M7P

GlcNAc-MDP

SagA (cyan)
CwlT (magenta)
Figure Legend

(a)

Fold activation (no receptor)
- **Buffer**
- **iE-DAP**
- **MDP**
- **syn GlcNAc-MDP**
- **GlcNAc-MDP**
- **GlcNAc-M7P**
- **Precursor**

(b)

Fold activation (NOD1)
- **Buffer**
- **MDP**
- **syn GlcNAc-MDP**
- **GlcNAc-MDP**
- **GlcNAc-M7P**
- **Precursor**

(c)

sup
- **Lpl-vector**
- **Lpl-SagA**
- **Lpl-C443A**
- **Lpl-ΔSS**

pellet
- **Lpl-vector**
- **Lpl-SagA**
- **Lpl-C443A**
- **Lpl-ΔSS**

Stain-free TM

(d)

Percent survival
- **PBS**
- **Lpl-vector**
- **Lpl-ΔSS**
- **Lpl-SagA**
- **Lpl-C443A**

Days Post Infection

- **P = 0.0092 (SagA vs vector)**
- **P = 0.0114 (SagA vs C443A)**
- **P = 0.0258 (SagA vs ΔSS)**
mucins
antimicrobial peptides
mucosal barrier
Enteric Pathogens
Peptidoglycan (diet or microbiota)
D,L-endopeptidase
Tolerance & Resistance
Paneth cell
Goblet cell

SagA -bacteria
GlcNAc -MDP
Direct activation
mucosal barrier
E. faecium
NOD2
NOD2
MDP
GlcNAc -MDP

Antimicrobial peptides
mucins

TLRs
<table>
<thead>
<tr>
<th></th>
<th>Efm Com15 SagA</th>
<th>Efs 62</th>
<th>Efs OG1R F A</th>
<th>Efs OG1R F B</th>
<th>Efs OG1R F C</th>
<th>Efs D32</th>
<th>Efs DENG1</th>
<th>Efs Symbioflor</th>
<th>Efs 10244</th>
<th>Efs L12</th>
<th>Efs V583</th>
<th>Efs KB1</th>
<th>Efs LD33</th>
<th>Efs L9</th>
<th>Efs Portland ATC C 29212</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>42.0</td>
<td>42.0</td>
<td>34.4</td>
<td>56.7</td>
<td>42.0</td>
<td>34.4</td>
</tr>
<tr>
<td>30</td>
<td>22.0</td>
<td>100.0</td>
<td>36.7</td>
<td>32.6</td>
<td>100.0</td>
</tr>
<tr>
<td>40</td>
<td>22.0</td>
<td>100.0</td>
<td>36.7</td>
<td>32.6</td>
<td>100.0</td>
</tr>
<tr>
<td>50</td>
<td>22.9</td>
<td>22.4</td>
<td>31.2</td>
<td>36.7</td>
</tr>
<tr>
<td>60</td>
<td>37.8</td>
<td>10.2</td>
<td>10.9</td>
<td>32.6</td>
<td>31.2</td>
</tr>
<tr>
<td>70</td>
<td>22.0</td>
<td>100.0</td>
<td>36.7</td>
</tr>
<tr>
<td>80</td>
<td>22.0</td>
<td>100.0</td>
<td>36.7</td>
</tr>
<tr>
<td>90</td>
<td>22.0</td>
<td>100.0</td>
<td>36.7</td>
</tr>
<tr>
<td>100</td>
<td>22.0</td>
<td>100.0</td>
<td>36.7</td>
</tr>
</tbody>
</table>

% identity

- **X** non-conserved
- **x** similar
- **≥ 70%** conserved
<table>
<thead>
<tr>
<th>% Identity</th>
<th>% Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ef m Com15 SagA</td>
<td>—</td>
</tr>
<tr>
<td>Ef m Aus0004</td>
<td>100.0</td>
</tr>
<tr>
<td>Ef m NRRL</td>
<td>100.0</td>
</tr>
<tr>
<td>Ef m T110</td>
<td>100.0</td>
</tr>
<tr>
<td>Ef m Aus0085</td>
<td>97.8</td>
</tr>
<tr>
<td>Ef m Com12</td>
<td>97.8</td>
</tr>
<tr>
<td>Ef m DO</td>
<td>97.8</td>
</tr>
</tbody>
</table>
Relative Abundance vs. Time (min)

(a) SagA-NlpC/p60
(b) C443A
(c) Buffer
(d) SagA-NlpC/p60

Time (min): 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60
Buffer

C443A

SagA-NlpC/p60

Calculated Mass: 697.30

Calculated Mass: 494.22
GlcNAc-MurNAc-dipeptide

(a) (b) (c) (d) (e)
Relative Abundance

Time (min)