Title: Ancient origins of arthropod moulting pathway components

De Oliveira¹, AL; Calcino¹, A and Wanninger¹ A.*

¹Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, Vienna, 1090, Austria

ORCID ID:
Andreas Wanninger: 0000-0002-3266-5838
André Luiz de Oliveira: 0000-0003-3542-4439
Andrew Calcino: 0000-0002-3956-1273

*author for correspondence: andreas.wanninger@univie.ac.at

Authors’email:
André Luiz de Oliveira: andre.luiz.de.oliveira@univie.ac.at
Andrew Calcino: andrew.calcino@univie.ac.at
Andreas Wanninger: andreas.wanninger@univie.ac.at
Abstract

Ecdysis (moulting) is the defining character of Ecdysoza (arthropods, nematodes and related phyla). Despite superficial similarities, the signalling cascade underlying moulting differs between Panarthropoda and the remaining ecdysozoans. Here, we reconstruct evolution of major components of the ecdysis pathway. Its key elements evolved much earlier than previously thought and are present in non-moulting lophotrochozoans and deuterostomes. Eclosion hormone (EH) and bursicon originated prior to the cnidarian-bilaterian split, whereas ecdysis-triggering hormone (ETH) and crustacean cardioactive peptide (CCAP) evolved in the bilaterian last common ancestor (LCA). Identification of EH, CCAP and bursicon in Onychophora and EH, ETH and CCAP in Tardigrada suggests that the pathway was present in the panarthropod LCA. Trunk, an ancient extracellular signalling molecule and a well-established paralog of the insect peptide prothoracicotropic hormone (PTTH), is present in the non-bilaterian ctenophore Mnemiopsis leidyi. This constitutes the first case of a ctenophore signalling peptide with homology to a neuropeptide.
Introduction

Ecdysis or moulting, which describes the process of shedding the outer integument, the cuticle, is a defining feature of Ecdysozoa (arthropods, tardigrades, onychophorans, nematodes and related phyla) (Aguinaldo et al., 1997; Schmidt-Rhaesa et al., 1998; De Rosa et al., 1999; Dunn et al., 2008; Telford et al., 2008). Despite superficial similarities of the "moulting behaviour" within Ecdysozoa, the neuroendocrine components underlying this process remain elusive for the majority of the ecdysozoans outside of Arthropoda. This includes well-established model organisms such as the nematode Caenorhabditis elegans, for which the gene regulatory network responsible for ecdysis remains to be fully resolved (Frand et al., 2005; reviewed by Page et al., 2014, and Lažetić & Fay, 2017).

In arthropods, ecdysis can be divided into three distinct stages, pre-ecdysis, ecdysis, and post-ecdysis. Each of these stages correlates with major behavioural, molecular, and cellular changes and encompasses a series of specific muscular contractions controlled by a cascade of hormones and neuropeptides (Truman, 2005). Studies in insects have revealed that the major components of this peptidergic signalling pathway are ecdysis-triggering hormone (ETH), eclosion hormone (EH), crustacean cardioactive peptide (CCAP) and bursicon (Gammie and Truman, 1997a,b; Žitňan et al., 1999; Clark et al., 2004; Kim et al., 2006a,b; Arakane et al., 2008; Lee et al, 2013). The process begins with the release of prothoracicotropic hormone (PTTH) from neurohemal organs. PTTH initiates a signalling cascade that results in the biosynthesis of ecdysteroids (i.e. steroid hormones synthesized from ingested cholesterol), including ecdysone (E) and 20-hydroxyecdysone (20E) (Figure 1). The decline of the ecdysone titre due to the ecdysone-inactivating enzyme cytochrome P450 protein Cyp18a1 (Guittard et al., 2011; reviewed by Rewitz et al., 2013), triggers the release of ETH that, in turn, causes the release of EH. These two hormones mutually enhance one another in a positive-feedback loop to control and regulate pre-ecdysis behaviour (Figure 1). With the ensuing release of CCAP, caused by EH, pre-ecdysis ceases and the ecdysis motor program is initiated. Finally, bursicon responds to the increasing levels of CCAP and initiates post-ecdysis behaviour and cuticle tanning (Figure 1).

Comparative biochemical, genomic and transcriptomic analyses revealed that ecdysteroids and the required genes responsible for their biosynthesis are present outside of Ecdysozoa, showing that some key molecular players of moulting predate the origin of Ecdysozoa (Mendis et al., 1984; Nolte et al., 1986; Garcia et al., 1989; Barker et al., 1990; Schumann et al., 2018). Such integrative and comparative analyses have so far not been conducted on the major components of the peptidergic signalling system underlying moulting. To fill this
Results and discussion

PTTH is a neurohormone with a proposed origin at the base of Arthropoda that is believed to have evolved from the duplication of the ancient and widely distributed bilaterian signalling molecule-encoding gene trunk (Rewitz et al., 2009; Jékely, 2013). By screening 39 metazoan genomes and 57 transcriptomes (Supplementary file 1), we found that the PTTH peptide is present in *Drosophila* and *Tribolium* but absent in the house spider *Parasteatoda tepidariorum* and the crustacean *Parhyale hawaiensis*), suggesting that PTTH is an insect innovation (Figure 2A,B, Figure 2 - figure supplement 1A, Figure 2 - source data 1). The ablation of PTTH-producing neurons in *Drosophila* generates an imbalance in ecdysone biosynthesis, causing developmental delay, prolonged duration of feeding, and larger individuals with reduced fecundity (McBrayer et al., 2007). These findings indicate that PTTH, at least in *Drosophila*, regulates developmental timing and body size, but is not essential for moulting. *Trunk*, the paralog of *ptth*, has previously been identified in arthropods, annelids, mollusks and the cephalochordate *Branchiostoma floridae* (Jékely, 2013). Our study expands the phyletic distribution of *trunk* to onychophorans, tardigrades, gastrotrichs, brachiopods, nemerteans, ectoprocts, phoronids, and hemichordates (Figure 2A,B, Figure 2 - figure supplement 1A, Figure 2 - source data 1). Although we did not find a *trunk* ortholog in the genome of the sea anemone *Nematostella vectensis*, our similarity searches against the NCBI protein database led to the identification of this protein in other anthozoans, namely *Stylophora pistillata* (PFX31008.1) and *Orbicella faveolata* (XP_020630744.1 and XP_020630745.1). More importantly, our multi-species screen also recovered a trunk-like peptide in the ctenophore *Mnemiopsis leidyi* with high similarity (p-value < 1e-05) to lophotrochozoan, deuterostome and ecdysozoan trunk sequences (Figure 2 – figure supplement 1A; Figure 3A,B). By similarity-based clustering we were able to demonstrate homology of the ctenophore trunk-like peptide with the insect *trunk* paralog, *ptth* (Figure 3A, Figure 3 - source data 1; see also Rewitz et al., 2009; Jékely, 2013). This extends the phyletic distribution of Trunk to the ctenophores (see, e.g., Halanych, 2004; Dunn et al., 2008; Moroz et al., 2014; Jékely et al., 2015; Pisani et al., 2015 for discussion).

PTTH and Trunk share a common receptor, the tyrosine kinase torso (Rewitz et al., 2009). Similar to its ligands, Torso (Rewitz et al., 2009) proved also to be much more ancient than commonly assumed. We identified torso sequences in deuterostomes, lophotrochozoans,
cnidarians, and ecdysozoans (Figure 2 – figure supplement 2), indicating that the Trunk-Torso neuropeptide signalling pathway dates back at least as far as the last common ancestor of Cnidaria, Ctenophora and Bilateria and is thus not restricted to Bilateria as suggested previously (e.g., Jékely, 2013) (Figures 2A,B, 4A).

In insects, the first hormone released in response to decreasing ecdysone levels is usually ETH (Zitnan et al., 1996, 1999) although in the lepidopteran Manduca sexta the neuropeptide corozanin acts as the trigger for the release of ETH from the epitracheal glands (Kim et al., 2004). Knockdown of the eth gene in Drosophila (Park et al., 2002), and of eth and its receptors in Tribolium and Schistocerca (Arakane et al., 2008; Lenaerts et al., 2017) lead to lethality at the expected onset of ecdisis, demonstrating the essential role of the ETH peptidergic signalling system in moulting (Park et al., 2002; Arakane et al., 2008; Lenaerts et al., 2017, Shie et al., 2017). Our screening and phylogenetic analyses confirmed the presence of ETH and its receptor in tardigrades and arthropods, thus corroborating previous studies (Figure 2B, Figure 2 – figure supplement 3, Figure 2 - source data 2) (Zitnan et al., 1996, 1999; Park et al., 2002; Arakane et al., 2008; Veenstra et al., 2012; Lenaerts et al., 2017; Koziol, 2018; Zhu et al., 2019). For Arthropoda, the ETH ligand was only found in insects (Drosophila and Tribolium), but was lacking in the crustacean Parhyale hawaiensis and the arachnid Parasteatoda tepidariorum. However, studies on the two mite species Panonychus citri and Tetranychus urticae have shown the presence of the ETH ligand in these chelicerates (in which the homology was reconfirmed by our clustering analysis) (Veenstra et al., 2012; Zhu et al., 2019). To date, no publicly available ETH ligand gene has been reported in crustaceans. Surprisingly, we did not find the entire ETH signalling pathway in the two onychophoran genomes analysed herein (Figures 2B,4B, Figure 2 – figure supplement 3, Figure 2 - source data 2). Due to the fragmented nature of the onychophoran genomes a final statement whether this signalling system was indeed lost in this lineage cannot be made at present.

No eth ortholog was identified outside the panarthropods, including the nematode C. elegans, suggesting that this gene originated in the last common ancestor of Panarthropoda (Figure 2B). Our findings on the distribution of the ETH receptor are in agreement with the results of previous studies and demonstrate the presence of this receptor in arthropods (insects, crustaceans, and arachnids), mollusks, nemerteans, brachiopods, echinoderms, cephalochordates (in which we found a substantial expansion of eth-receptor homologs in the genomes of Branchiostoma floridae and B. belcheri), vertebrates, and acoels (Park et
Eclosion hormone (EH) was first identified as a blood-borne factor (Truman & Riddiford, 1970) in three lepidopteran species, *Hyalophora cecropia*, *Antheraea polyphemus*, and *Antheraea pernyi*. A positive feedback loop between EH and ETH was found in *Manduca* and suggested in *Tribolium* (Ewer et al., 1997; Arakane et al., 2008), whereas in *Drosophila*, EH has been described either acting downstream of ETH (Kim et al., 2006a,b) or in a positive endocrine feedback loop with ETH (Krüger et al., 2015). Despite EH being a key regulator of ecdysis in insects, *eh* knockout in *Drosophila melanogaster* did not abolish ecdysis, but instead produced flies with discrete behavioural deficits such as slow and uncoordinated eclosion. This shows that EH is involved in, but does not play an essential role in moulting in these insects (McNabb et al., 1997). This result, however, has been contested in a more recent study using *eh* null mutants in *Drosophila* (Krüger et al., 2015), showing that the lack of *eh* function is lethal during larval fruit fly ecdysis.

Traditionally considered to be confined to arthropods, recent studies showed the presence of EH and its receptor, a guanylyl cyclase, in echinoderms and tardigrades (Zandawala et al., 2017; Koziel, 2018). Our study corroborates these findings but considerably expands the presence of the EH ligand to cnidarians, acoels, hemichordates, lophotrochozoans (mollusks, annelids, nemerteans, and phoronids), and onychophorans (Figure 2B, Figure 2 – figure supplement 1B, Figure 2 - source data 3). All EH ligand orthologs harbour the six cysteine conserved residues (Žitňan et al., 2007) except for Cnidaria, in which only five are present. The identification of the EH receptor in ambulacarians, mollusks, annelids, nemerteans and phoronids suggests co-evolution of this ligand-receptor pair throughout Metazoa (Figure 2B, Figure 2 – figure supplement 4, Figure 2 - source data 3). Although the *eh-receptor* gene was not found in Cnidaria, Xenacoelomorpha and Onychophora, its distribution includes the Brachiopoda, Ectoprocta and Cephalochordata lineages. Consequently, our findings shift the ancestry of this peptidergic pathway back to the cnidarian-bilaterian split (Figures 2A, 4A).

First isolated from the shore crab *Carcinus maenas*, crustacean cardioactive peptide (CCAP) is a highly conserved amidated neuropeptide that increases heart rate in
crustaceans and insects (Stangier et al., 1987; Cheung et al., 1992; Lehman et al., 1993; Suggs et al., 2016). CCAP has multiple functions in addition to its cardioacceleratory activity, such as accelerating the frequency and amplitude of oviduct contractions in the locust *Locusta migratoria* (Donini et al., 2001), regulating the release of digestive enzymes in the cockroach *Periplaneta americana* (Sakai et al., 2006). CCAP is important for ecdysis in crustaceans and insects where it initiates the stereotyped sequence of behaviors that mark the end of the pre-ecdysis stage (Gammie & Truman, 1997a, b; Philippen et al., 2000; Arakane et al., 2008; Lee et al., 2013). However, transgenic *Drosophila* larvae lacking CCAP neurons moult normally and only exhibit a prolonged pre-ecdysis behaviour (Clark et al., 2004).

Only three studies focusing on the CCAP signalling pathway components are available outside of Arthropoda. In the snail *Lymnaea stagnalis* (Vehovszky et al., 2005), immunostaining revealed a dense network of CCAP-positive fibers that likely function to regulate parts of the feeding behaviour. In the oyster *Saccostrea glomerata* (In et al., 2016) and in the cuttlefish *Sepia officinalis* (Endress et al., 2018), *in vivo* bioassays using synthesized neuropeptides and immunohistochemistry suggested that the CCAP signalling pathway is involved in reproduction (e.g., spawning, oocyte transport, egg-laying). Additionally, *Sepia* CCAP has been shown to increase the tonus of the vena cava, demonstrating its role in the regulation of hemolymph circulation (Endress et al., 2018). These results indicate that in both, mollusks and arthropods, CCAP functions in feeding, reproduction, and regulation of hemolymph circulation, suggesting that these may have been its ancestral roles. In arthropods, co-option of CCAP in to the ecdysis pathway expanded this set of functions to include molting.

The CCAP receptor is a G protein-coupled receptor (GPCR) that was first described from the *Drosophila* genome and subsequently identified in many other insects (Cazzamali et al., 2003; Arakane et al., 2008; Vogel et al., 2013). We confirm here the presence of a CCAP ligand in mollusks, annelids, arthropods and tardigrades, as stated earlier (Veenstra et al., 2010; Jékely, 2013; Mirabeau & Joly, 2013; Conzelmann et al., 2013; Stewart et al., 2014; Ahn et al., 2017; Zhang et al., 2018; Koziol, 2018). However, our study extends the distribution of the CCAP ligand to three additional lophotrochozoan phyla (Nemertea, Platyhelminthes and Rotifera), and to the remaining panarthropod phylum Onychophora (Figures 2B, 4B, Figure 2 – figure supplement 1C, Figure 2 - source data 4). Interestingly, the CCAP ligand is absent from all investigated deuterostome genomes analysed (Figure 2
Bursicon was identified as a neurohormone responsible for cuticle sclerotization and melanisation (tanning) during post-ecdysis (Cottrell, 1962a, 1962b; Fraenkel & Hsiao, 1965). Recent studies have shown that bursicon also has a mild effect on the regulation of pre-ecdysis and is important for the proper execution of post-ecdysis in Manduca, Drosophila and Tribolium as well as for the development of wings and other integumentary structures (Baker & Truman, 2002; Dewey et al., 2004; Arakane et al., 2008; Bai & Palli, 2010). Together with the ecdydis-triggering hormone signalling system, bursicon is an indispensable component of the moulting behaviour in insects (Arakane et al., 2008). Previous studies show that bursicon is present outside Ecdysozoa, e.g. in the anthozoan Nematostella vectensis, the echinoderm Strongylocentrotus purpuratus, as well as in annelids and mollusks (Jékely 2013; Conzelmann et al., 2013; Stewart et al., 2014; Ahn et al., 2017; Zhang et al., 2018). Our work confirms the presence of the complete bursicon signalling system in all arthropod genomes here analysed, and extends its distribution (receptor and/or ligand) to the hemichordate, nemertean, phoronid, rotifer and onychophoran phyla (Figure 2B, Figure 2 – figure supplement 1D, Figure 2 - source data 5). Interestingly, bursicon and its receptor rickets are absent in tardigrades, suggesting the loss of the bursicon peptidergic signalling in this lineage (Figures 2B,4B, Figure 2 – figure supplement 6, Figure 2 - source data 5). The latter findings are corroborated by independent proneuropeptide and peptide prohormone surveys in the tardigrade genomic and EST data that also failed to detect this ligand-receptor pair in different tardigrade species (Christie et al., 2011; Koziol, 2018). We did not identify the receptor in any deuterostome or non-arthropod ecdysozoan lineage (Figure 2B).
components, such as the ecdysteroid ecdysone (E), 20-hydroxyecdysone (20E), and various Halloween gene products have also been reported absent from the *C. elegans* genome (Frand et al., 2005, Schumann et al., 2018). An extensive body of research on moulting in *C. elegans* suggests an entirely different molecular machinery controlling this behaviour in this free-living nematode (Russel et al., 2011; for review Lažetić & Fay, 2017). Interestingly, however, E and 20E were identified in parasitic nematodes (Cleator et al., 1987; Shea et al., 2004) and, outside Ecdysozoa, in the platyhelminth *Moniezia expansa*, the gastropod mollusks *Lymnaea stagnalis* and *Helix pomatia*, as well as in the hirudinean annelid *Hirudo medicinalis* (Mendis et al., 1984; Nolte et al., 1986; Garcia et al., 1989; Barker et al., 1990).

Conclusion

We show that key peptidergic components of the arthropod ecdysis pathway emerged prior to the protostome-deuterostome split, and thus considerably earlier than commonly assumed. EH, CCAP and the bursicon signalling systems are more widespread among non-moultiong animals than previously appreciated. The presence of the *eth-receptor* ortholog in ecdysozoans, lophotrochozoans and deuterostomes, in combination with the restriction of its known ligand to insects, arachnids and tardigrades, suggests a scenario in which promiscuous ligand/receptor relationships can lead to novel signalling interactions that provide new opportunities for natural selection to generate novel functions (Figure 2B). The identification of the near complete suite of the peptidergic arthropod ecdysis pathway components in Onychophora and Tardigrada strongly suggests that the entire pathway was at least functional in the last common ancestor of Panarthropoda and maybe as early as in the ur-ecdyszoan (Figures 2B, 4B). However, considering the crucial role of the ETH and bursicon signalling systems in insect moulting, together with the apparent secondary loss of ETH in Onychophora and bursicon in Tardigrada (Figure 4B), the consequences of harboring only the partial set of the ecdysis signalling genes should be the focus of future assessment. Independent recruitment of novel peptidergic components into insect ecdysis has been shown (cf. Kim et al., 2004, 2006a,b; extensively reviewed by Zitnan & Adams, 2012) illustrating the evolutionary plasticity of this signalling pathway and calls for more detailed functional investigations into the role of individual components during moulting of the various ecdysozoan lineages.

Material and methods

Data collection, filtering, sequence reconstruction, and proteome prediction
To obtain a comprehensive sampling across Metazoa, ecdysozoan, deuterostome, and non-bilaterian protein-coding sequence (CDS) databases were downloaded from publicly available sites and combined with previous lophotrochozoan transcriptomes (see De Oliveira et al., 2019). The acoel transcriptomic data were pre-processed and assembled as described in De Oliveira et al. (2019). The databases include representatives from the following phyla: Porifera, Ctenophora, Cnidaria, Placozoa, Xenacoelomorpha, Echinodermata, Hemichordata, Chordata, Annelida, Brachiopoda, Ectoprocta, Entoprocta, Gastrotricha, Mollusca, Nemertea, Phoronida, Platyhelminthes, Rotifera, Arthropoda, Tardigrada, Onychophora, and Nematoda. The choanoflagellate Monosiga brevicollis was used as outgroup. Supplementary File 1 summarises the databases and the publicly available repository from which they were obtained. Sequence read archive (SRA) accession numbers for xenacoelomorph databases are also shown.

Sensitive similarity searches with jackhmmer

Sensitive probabilistic iterative similarity searches based on profile hidden Markov models (HMMs) were performed with jackhmmer (Johnson et al., 2010) against the respective metazoan and choanoflagellate databases. Insect *eh, eth ccap, ptth,* and *bursicon* orthologs were retrieved from NCBI (National Center for Biotechnology Information) and their respective receptors from Vogel et al. (2013). These sequences were used as queries in the similarity searches. The searches were performed under the default parameters using varying e-value thresholds (1 to 1e-06) controlled by the options –E and –domE, as defined in jackhmmer. The best hits found in the metazoan and choanoflagellate databases were stored in fasta format and used in the subsequent analyses.

Clustering and phylogenetic analyses

EH, ETH, CCAP, PTTH, and bursicon ligand candidates retrieved from the metazoan and choanoflagellate databases were used as input, together with their respective insect orthologs, in the program clans (Frickey & Lupas, 2004) under different e-value thresholds (0.1 to 1e-06) and blast programs, i.e. blastp or psiblast (Camacho et al., 2009). Singleton sequences (isolated unconnected sequences) were excluded from the map. To further improve the orthology assessment, multiple sequence alignments were performed with mafft (Katoh & Standley, 2013) and the presence of shared conserved amino acid regions and residues were investigated with aliview (Larssson, 2014). The final 3D maps were collapsed into 2D after the clustering for easier visualisation.
Putative EH, ETH, CCAP, PTTH, and bursicon receptor candidates retrieved from the metazoan and choanoflagellate databases were aligned with mafft together with their respective orthologs, when found, and subsequently trimmed with BMGE software under the following parameters: --h 1 --b 1 --m BLOSUM30 --t AA (Criscuolo & Gribaldo, 2010). Outgroups for the phylogenetic analyses were defined according to Vogel et al. (2013).

Phylogenetic analyses were performed using RAxML (Stamatakis, 2014), PhyML (Guindon et al., 2010), and mrbayes (Ronquist et al., 2012) softwares using the appropriate best-fit model of amino acid substitution. RaxML was executed under default parameters and rapid bootstrap. PhyML was executed under the default parameters and an optimised starting tree (-o tlr option). The number of bootstrap values was set to 1.000 in RaxML and PhyML, and the number of generations used in mrbayes was determined using a convergence diagnostic. All runs in mrbayes were performed with the samplefreq and relative burn-in defined as 1000 and 25%, respectively. The three final phylogenetic trees obtained for each of the four different receptors were visualised and combined with TreeGraph2 (Stöver & Müller, 2010).

Funding

This work was supported by the Brazilian programme “Science without Borders” (Ciência sem Fronteiras; Project Number 6090/13-3) to ALDO and by a grant of the Austrian Science Fund (FWF; Project Number: P29455-B29) to AW.

Data availability

All data generated in the course of this study are included in this article (Supplementary File 1). The accession numbers for the publicly available datasets used in this work are available in Supplementary File 1. The 3D cluster peptide maps can be visualised and manipulated using the program clans (Frickey & Lupas, 2004; see ftp://ftp.tuebingen.mpg.de/pub/protevo/CLANS/). The multiple sequence alignment files can be viewed with aliview (Larsson, 2014). The phylogenetic tree files can be viewed using Figtree (http://tree.bio.ed.ac.uk/software/figtree/) or TreeGraph2 (Stöver & Müller, 2010).

Declaration of Interests

The authors declare no competing interests.

References

Pisani, D., Pett, W., Dohrmann, M., Feuda, R., Rota-Stabelli, O., Philippe, H., et al. (2015). Genomic data do not support comb jellies as the sister group to all other animals. Proceedings of the National Academy of Sciences, 112(50), 15402-15407.

Figure legends

Figure 1: Simplified overview of the neuropeptide/hormone signalling pathway at moulting. PTTH initiates a signalling cascade that results in the biosynthesis of ecdysone. The decline of the ecdysone titre triggers the release of ETH that, in turn, causes the release of EH. These two hormones mutually enhance one another in a positive-feedback loop to control and regulate pre-ecdysis behaviour. With the ensuing release of CCAP, caused by EH, pre-ecdysis ceases and the ecdysis motor program is started. Finally, bursicon responds to the increasing levels of CCAP and initiates post-ecdysis behaviour and cuticle tanning. This figure is based on the studies of McNabb et al. (1997) and Clark et al. (2004).

Animal silhouettes were obtained under Public Domain licence at phylopic (http://phylopic.org/), unless otherwise indicated. Coleoptera: T. Michael Keesey after Ponomarenko (available for reuse under https://creativecommons.org/publicdomain/zero/1.0/); Moth: by Gareth Monger (available for reuse under https://creativecommons.org/licenses/by/3.0/); Drosophila: Thomas Hegna (available for reuse under https://creativecommons.org/publicdomain/zero/1.0/).
Figure 2. Origin and distribution of the key ligand-receptor components of the
arthropod moulting signalling pathway across Metazoa.

(A) Simplified phylogeny (based on Dunn et al., 2014) of Metazoa showing the lineages in
which the key components of the arthropod moulting signalling pathway are present. Note
that Porifera and Placozoa, that lack the moulting pathway components investigated here,
are omitted for clarity. Coloured lines indicate the presence of a given ligand and/or receptor
in a given lineage. Ecdision hormone and bursicon peptidergic systems originated prior to
the cnidarian-bilaterian split, whereas the ecdysis-triggering hormone and crustacean
cardioactive peptide trace back to the last common ancestor of Bilateria. PTTH is an insect-
specific neuropeptide.

(B) Expanded phylogeny of Metazoa with Porifera as the earliest branching clade (adapted
from Dunn et al., 2014). Coloured lines indicate the presence of a given ligand (right side)
and receptor (left side) in a given lineage. Phylum name in bold indicates the availability of
genomic data. Note that although the trunk ortholog was not retrieved from the genomes of
Nematostella vectensis and Caenorhabditis elegans, similarity searches against publicly
available protein databases identified this gene in other cnidarian and nematode species.
Animal silhouettes were obtained under Public Domain licence at phylopic
(http://phylopic.org/), unless otherwise indicated. Credited images: Ctenophora: Martini
(available for reuse under https://creativecommons.org/publicdomain/zero/1.0/); Cnidaria:
Jack Warner (available for reuse under https://creativecommons.org/publicdomain/zero/1.0/); Xenacoelomorpha: Andreas Hejnol
(available for reuse under https://creativecommons.org/licenses/by-nc/3.0/); Chordata: Jake
Warner (available for reuse under https://creativecommons.org/licenses/by/3.0/); Ambulacraria: Noah Schlottman (photograph from Casey Dunn available for reuse under
https://creativecommons.org/licenses/by-sa/3.0/); Ecdysozoa: Thomas Hegna based on
picture by Nicolas Gompel (available for reuse under https://creativecommons.org/publicdomain/mark/1.0/); Lophotrochozoa: Fernando
Carezzano (available for reuse under https://creativecommons.org/publicdomain/zero/1.0/).
Figure 3. Cluster analysis of *prothoracicotropic-hormone (ptth)*, *trunk*, *noggin* orthologs, and multiple sequence alignment of the ctenophore trunk-like peptide and the metazoan ortholog sequences.

(A) 2D cluster map of *ptth*, *trunk* and *noggin* genes. Red triangles correspond to PTTH homologs, green parallelograms correspond to *noggin* homologs, and red circles correspond to *trunk* homologs. The ctenophore *trunk* gene sequence is represented by the pink star. Edges represent BLAST connections of P value > 1e-05. Note that the ctenophore trunk peptide is indirectly connected to insect PTTH sequences via transitive BLAST connections.

(B) Multiple sequence alignment representation of ctenophore trunk sequence and its metazoan orthologs produced by Jalview 2 (Waterhouse et al., 2009). Only the sequences directly connected to the ctenophore sequence in the 2D cluster map are included in the multiple sequence alignment. The conservation histogram corresponds to the number of conserved amino acid physico-chemical properties for each column of the alignment.
Figure 4. Distribution of the arthropod peptidergic system components throughout Metazoa.

(A) Simplified phylogeny of Metazoa with Porifera as the most basally branching clade (adapted from Dunn et al., 2014) showing the origin of the Trunk/PTTH, eclosion-hormone (EH), bursicon, crustacean cardioactive peptide (CCAP) and ecdysis-triggering hormone (ETH) peptidergic systems.

(B) Distribution of the arthropod peptidergic system components within Panarthropoda. Secondary losses are depicted by the red crosses followed by the name of the peptide system absent in the lineage. Note that ETH and bursicon, two vital components underlying moulting in insects, were possibly secondarily lost in the Onychophora and Tardigrada (indicated by the red cross), respectively. Genomic and transcriptomic homology searches within the Kinorhyncha, Priapulida and Loricifera (condensed into the clade Scalidophora in Figure 1B) were not performed in this study (indicated by the question mark). Animal silhouettes were obtained under Public Domain licence at phylopic (http://phylopic.org/), unless otherwise indicated. Arthropoda: T. Michael Keesey after Ponomarenko (available for reuse under https://creativecommons.org/publicdomain/zero/1.0/); Onychophora: Noah Schlottman, photo by Adam G. Clause (available for reuse under https://creativecommons.org/licenses/by-sa/3.0/); Tardigrada: Fernando Carezzano (available for reuse under https://creativecommons.org/publicdomain/zero/1.0/); Nematoida: Mali'o Kodis, image from the Smithsonian Institution (available for reuse under https://creativecommons.org/licenses/by-nc-sa/3.0/); Scalidophora: Noah Schlottman, photo by Martin V. Sørensen (available for reuse under https://creativecommons.org/licenses/by-sa/3.0/).
Supplementary Data and Information

Supplementary File 1. List of molecular databases included in this study. Superphylum and/or phylum of the investigated species and the online repositories for each of the databases are also listed.

Figure 2 - figure supplement 1
2D cluster maps of trunk/PTTH EH, CCAP and bursicon ligands reflecting the evolutionary relatedness of the key arthropod moulting components among metazoans. Colour shapes and nodes are based on the different metazoan phyla investigated (circles = protostome animals; triangles = deuterostome animals; crosses = cnidarians and ctenophores; square = xenacoelomorphs). Edges correspond to BLAST connections. The ctenophore trunk sequence (A) is circled and marked with a white arrow.

Figure 2 - figure supplement 2
Phylogenetic analysis of the PTTH/trunk receptor tyrosine kinase torso showing the presence of torso receptor in cnidarians, lophotrochozoans, ecdysozoans, and deuterostomes. Support values for the tree nodes obtained from mrbayes, RAxML, and PhyML are shown as percentage. Tree topology obtained from RAxML was used as a backbone, and conflicting topology branches from mrbayes and PhyML inferred trees are marked by brackets ([]) around the support values.

Figure 2 - figure supplement 3
Phylogenetic analysis of the ecdysis-triggering hormone receptor showing the presence of ETH-receptor in bilaterians. Note a substantial expansion of the eth-receptor homologs in the genomes of the Branchiostoma floridae and B. belcheri. Support values for the tree nodes obtained from mrbayes, RAxML, and PhyML are shown as percentage. Tree topology obtained from RaXML was used as a backbone, and conflicting topology branches from RAxML and PhyML inferred trees are marked by brackets ([]) around the support values.

Figure 2 - figure supplement 4
Phylogenetic analysis of the guanylyl cyclase eclosion hormone receptor showing the presence of EH-receptor in ecdysozoans, lophotrochozoans, ambulacrarians, and
cephalochordates. Support values for the tree nodes obtained from mrbayes, RAxML, and PhyML are shown as percentage. Tree topology obtained from mrbayes was used as a backbone, and conflicting topology branches from RAxML and PhyML inferred trees are marked by brackets ([]) around the support values.

Figure 2 - figure supplement 5
Phylogenetic analysis of the G protein-coupled CCAP receptor showing the presence of CCAP-receptor in ecdysozoans, lophotrochozoans, deuterostomes (including vertebrates), and acoels. Support values for the tree nodes obtained from mrbayes, RAxML, and PhyML are shown as percentage. Tree topology obtained from RAxML was used as a backbone, and conflicting topology branches from mrbayes and PhyML inferred trees are marked by brackets ([]) around the support values.

Figure 2 - figure supplement 6
Phylogenetic analysis of the bursicon G protein-coupled receptor rickets. Note the restriction of the rickets receptor to arthropods and lophotrochozoans, while its ligand is also present in cnidarians and various deuterostomes. Support values for the tree nodes obtained from mrbayes, RAxML, and PhyML are shown as percentage. Tree topology obtained from RAxML was used as a backbone, and conflicting topology branches from mrbayes and PhyML inferred trees are marked by brackets ([]) around the support values.

Figure 2 - source data 1 – PTTH/trunk/torso proteins and tree associated files
Compressed .zip file containing the 3D-cluster map of the PTTH and trunk ligands in .rtf format, the torso receptor proteins in fasta format, the multiple sequence alignment of the receptor (trimmed and untrimmed), and the tree files generated by RAxML, PhyML and mrbayes programs. The 3D cluster peptide map can be visualised and manipulated using the program clans (Frickey & Lupas, 2004; see ftp://ftp.tuebingen.mpg.de/pub/protevo/CLANS/). The multiple sequence alignment files can be viewed with aliview (Larsson, 2014). The phylogenetic tree files can be viewed using Figtree (http://tree.bio.ed.ac.uk/software/figtree/) or TreeGraph2 (Stöver & Müller, 2010).

Figure 2 - source data 2 – ETH/ETH-receptor proteins and tree associated files
Compressed .zip file containing the 3D-cluster map of the ETH ligands in .rtf format, the ETH receptor proteins in fasta format, the multiple sequence alignment of the receptor
The 3D cluster peptide map can be visualised and manipulated using the program clans (Frickey & Lupas, 2004; see ftp://ftp.tuebingen.mpg.de/pub/protevo/CLANS/). The multiple sequence alignment files can be viewed with aliview (Larsson, 2014). The phylogenetic tree files can be viewed using Figtree (http://tree.bio.ed.ac.uk/software/figtree/) or TreeGraph2 (Stöver & Müller, 2010).

Figure 2 - source data 3 – EH/EH-receptor proteins and tree associated files
Compressed .zip file containing the 3D-cluster map of the EH ligands in .rtf format, the EH receptor proteins in fasta format, the multiple sequence alignment of the receptor (trimmed and untrimmed), and the tree files generated by RAxML, PhyML and mrbayes programs. The 3D cluster peptide map can be visualised and manipulated using the program clans (Frickey & Lupas, 2004; see ftp://ftp.tuebingen.mpg.de/pub/protevo/CLANS/). The multiple sequence alignment files can be viewed with aliview (Larsson, 2014). The phylogenetic tree files can be viewed using Figtree (http://tree.bio.ed.ac.uk/software/figtree/) or TreeGraph2 (Stöver & Müller, 2010).

Figure 2 - source data 4 – CCAP/CCAP-receptor protein sequences and tree files
Compressed .zip file containing the 3D-cluster map of the CCAP ligands in .rtf format, the CCAP receptor proteins in fasta format, the multiple sequence alignment of the receptor (trimmed and untrimmed), and the tree files generated by RAxML, PhyML and mrbayes programs. The 3D cluster peptide map can be visualised and manipulated using the program clans (Frickey & Lupas, 2004; see ftp://ftp.tuebingen.mpg.de/pub/protevo/CLANS/). The multiple sequence alignment files can be viewed with aliview (Larsson, 2014). The phylogenetic tree files can be viewed using Figtree (http://tree.bio.ed.ac.uk/software/figtree/) or TreeGraph2 (Stöver & Müller, 2010).

Figure 2 - source data 5 – Bursicon/rickets protein and tree associated files
Compressed .zip file containing the 3D-cluster map of the bursicon ligands in .rtf format, the rickets receptor proteins in fasta format, the multiple sequence alignment of the receptor (trimmed and untrimmed), and the tree files generated by RAxML, PhyML and mrbayes programs. The 3D cluster peptide map can be visualised and manipulated using the program clans (Frickey & Lupas, 2004; see ftp://ftp.tuebingen.mpg.de/pub/protevo/CLANS/). The multiple sequence alignment files can be viewed with aliview (Larsson, 2014). The
phylogenetic tree files can be viewed using Figtree (http://tree.bio.ed.ac.uk/software/figtree/) or TreeGraph2 (Stöver & Müller, 2010).

Figure 3 - source data 1 – Ctenophore trunk cluster peptide map
Compressed .zip file containing the 3D-cluster map of *ptth*, *trunk* and *noggin* orthologs in .rtf format. The 3D cluster peptide map can be visualised and manipulated using the program clans (Frickey & Lupas, 2004; see ftp://ftp.tuebingen.mpg.de/pub/protevo/CLANS/).

Supplementary References

Trunk/Prothoracicotropic-hormone (PTTH) (A)

Eclosion hormone (B)

Crustacean cardioactive peptide (CCAP) (C)

Bursicon (D)

- Mollusca
- Annelida
- Phoronida
- Nemertea
- Platyhelminthes
- Rotifera
- Brachiopoda
- Gastrotricha
- Platyhelminthes
- Ectoprocta
- Arthropoda
- Onychophora
- Tardigrada
- Echinodermata
- Hemichordata
- Cephalochordata
- Cnidaria
- Ctenophora
- Xenacoelomorpha

p-value
1e-06
1e-276
1e-05
1e-135
Evolution of arthropod ecdysis pathway peptidergic system

1. origin of trunk
2. origin of EH/bursicon
3. origin of CCAP/ETH
4. origin of PTTH

METAZOA
PARAHOXOZOAA
BILATERIA
NEPHREROZOA
Arthropoda
Onychophora
Tardigrada
Scalidophora
Nematoida
Lophotrochozoa

PANARTHROPODA
Arthropoda
Onychophora
Tardigrada
Nematoida
Scalidophora

ECDYSOZOAA

Origin of ETH?
ETH
CCAP
bursicon

Origin of ETH?
ETH
CCAP
bursicon

Origin of ETH?
ETH
CCAP
bursicon