A dedicated diribonucleotidase resolves a key bottleneck as the terminal step of RNA degradation

Soo-Kyung Kim¹,*, Justin D. Lormand²,*, Cordelia A. Weiss¹,*, Karin A. Eger², Husan Turdiev¹, Asan Turdiev¹, Wade C. Winkler¹,#, Holger Sondermann²,#, Vincent T. Lee¹,#

¹ Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
² Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA

* Authors contributed equally to this work.

To whom correspondence should be addressed:
Email: wwinkler@umd.edu, phone: 301 405 7780
Email: hs293@cornell.edu, phone: 607 253 3318
Email: vtlee@umd.edu, phone: 301 405 9397
Abstract

Degradation of RNA polymers, an ubiquitous process in all cells, is catalyzed by specific subsets of endo- and exoribonucleases that together recycle RNA fragments into nucleotide monophosphate. In γ-proteobacteria, 3-'5' exoribonucleases comprise up to eight distinct enzymes. Among them, Oligoribonuclease (Orn) is unique as its activity is required for clearing short RNA fragments, which is important for cellular fitness. However, the molecular basis of Orn’s unique cellular function remained unclear. Here we show that Orn exhibits exquisite substrate preference for diribonucleotides. Crystal structures of substrate-bound Orn reveal an active site optimized for diribonucleotides. While other cellular RNases process oligoribonucleotides down to diribonucleotide entities, Orn is the one and only diribonucleotidase that completes the terminal step of RNA degradation. Together, our studies indicate RNA degradation as a step-wise process with a dedicated enzyme for the clearance of a specific intermediate pool, diribonucleotides, that affects cellular physiology and viability.
Introduction

Degradation of RNA is initiated by endonuclease-catalyzed cleavages; the resulting oligoribonucleotide fragments are hydrolyzed to completion by a mixture of exoribonucleases for the maintenance of cellular nucleotide pools\(^1\). Unlike the conserved machineries for the synthesis of macromolecules, distinct sets of RNases are used by different organisms to degrade these oligoribonucleotides. *Escherichia coli* genomes encode eight 3’-5’ exoribonucleases, namely polynucleotide phosphorylase, RNase II, D, BN, T, PH, R and oligoribonuclease (Orn)\(^1,2\). A subset of these enzymes recognizes structural features of the RNA substrate, such as in tRNA, while others act on unstructured polymers\(^3\).

As an exoribonuclease, Orn is unique for two reasons. First, *orn* is required for viability in many \(\gamma\)-proteobacteria, including *E. coli*\(^4\) and other organisms\(^5,6\), unlike all other known 3’-5’ exoribonucleases. This indicates that not all exoribonucleases have redundant functions despite acting on the 3’ end of RNA substrates and in several cases, including RNase R and RNase II, sharing an activity toward oligoribonucleotides\(^7-10\). Hence, Orn appears to catalyze a particularly important step in RNA turnover. Second, Orn is a key enzyme in bacterial cyclic-di-GMP (c-di-GMP) signaling. The nucleotide second messenger c-di-GMP is produced in bacteria in response to environmental cues and controls a wide range of cellular pathways, including cell adhesion, biofilm formation, and virulence\(^11-15\). Since the discovery of c-di-GMP over 30 years ago, it has been known that the signal is degraded by a two-step process with a linear pGpG diribonucleotide intermediate\(^16\). While the enzyme for linearizing c-di-GMP to pGpG was discovered early on\(^17,18\), the identity of the enzyme that degrades pGpG remained elusive. Two recent studies showed that Orn is the primary enzyme that degrades pGpG in *Pseudomonas aeruginosa*\(^19,20\). In an *orn* deletion strain, the accrual of linear pGpG has a profound effect on cells. Specifically, the increase in pGpG inhibits upstream phosphodiesterases that
degrade c-di-GMP, thereby triggering phenotypes associated with high cellular c-di-GMP levels. However, the molecular basis of Orn’s unique cellular functions in γ-proteobacteria that distinguishes it from all other exoribonucleases remains unexplained.

Since its discovery over 50 years ago, Orn has been presumed to degrade oligoribonucleotides. This notion largely derived from assays utilizing two types of substrates. In one series of experiments, ^3H polyuridine (poly(U)) was incubated with Orn, other enzymes, or lysates and analyzed by paper chromatography, which offers limited resolution overall. In a second set of experiments, Orn was incubated with oligoribonucleotides that had been tagged at their 5’ terminus by a large fluorophore. The products of this reaction were resolved by denaturing polyacrylamide gel electrophoresis, thereby allowing for detection of products with one or more nucleotides removed from the 3’ terminus. In both instances, it was concluded that Orn could processively degrade “short” oligoribonucleotides. Yet it was not clear how Orn might selectively target “short” RNAs, rather than simply binding to the penultimate sequence at the 3’ termini of single-stranded RNA of any length.

Here, we sought to rigorously examine Orn’s substrate preferences, revealing its unique properties. To that end, we incubated Orn with 5' ^32P end-labeled RNAs of varying lengths and analyzed the products of that reaction over time. Our data show that Orn exhibits a surprisingly narrow substrate preference for diribonucleotides. This finding is in stark contrast to the previous studies that described a broader substrate length range and that originally gave oligoribonuclease its name. We sought to understand this remarkable substrate selectivity of Orn by determining the crystal structures of Orn in complex with pGpG and other linear diribonucleotides. These data reveal a structural basis for the diribonucleotide preference and identify key residues for recognizing diribonucleotides. Furthermore, we find that Orn is the only diribonucleotidase in P. aeruginosa. Additionally, we show that other diribonucleotides, in addition to pGpG, can affect bacterial physiology. From this we
propose a general model of RNA degradation, wherein a combination of exoribonucleases process oligoribonucleotides down to diribonucleotides and Orn completes RNA recycling by cleaving diribonucleotides to nucleoside monophosphates. In this way, Orn occupies an important but discrete step in the overall RNA degradation pathway.

Results and Discussion

Orn functions as a diribonucleotidase in vitro. To understand the length preference of Orn, recombinant affinity-tagged *Vibrio cholerae* Orn (Orn_{Vc}) was purified and tested biochemically. We used an established ligand-binding assay²⁹ to determine the relative substrate affinities of Orn to 5'-radiolabeled oligoribonucleotides that ranged from two to seven nucleotides in length. Unlike fluorophore-labeled RNA used in several earlier studies^{19,25-28}, radiolabeling with ³²P ensures that the substrate structure is unperturbed compared to native ligands. The assays were also performed in buffer lacking divalent cations to prevent complication due to enzyme activity. When spotted on nitrocellulose membranes, protein and protein-substrate complexes are sequestered at the point of application to the membrane, whereas unbound substrate diffuses due to radial capillary action²⁹. By this assay, quantification of the diffusion zone reveals that Orn_{Vc} exhibits the highest affinity for diribonucleotide ($K_d^{pGpG} = 90 \pm 9$ nM), as compared to oligoribonucleotides of greater lengths (Table 1)²⁰. The observed affinity of Orn_{Vc} with the purification tag removed ($K_d^{pGpG} = 80 \pm 9$ nM) was similar indicating the tags did not alter the interactions (Figure 3 – figure supplement 4). Increase in the length to three or four residues reduces the affinity 7- or 10-fold, respectively (Table 1). Substrates with 5 or more bases show a greater than 28-fold reduction in affinity compared to diribonucleotides. These results suggest that Orn has a strong preference for diribonucleotides over longer oligonucleotides.
To understand whether the affinity preference reflects nuclease activity with natural substrates that are unmodified at the 5’ end, we incubated Orn_{Vc} with 5’-32P-radiolabeled oligoribonucleotides of varying lengths in the presence of divalent cations that support catalysis. The products of these reactions were resolved by urea-denaturing 20% polyacrylamide gel electrophoresis (PAGE). Under these electrophoresis conditions, the mononucleotides and oligonucleotides that were tested (between 2 and 7 nucleotides in length) can be resolved. The diribonucleotide substrate in this experiment was pGpG (GG), whereas the longer oligoribonucleotides included an increasing number of adenine nucleotides at the 5’ end. This arrangement ensured that the same GG sequence was maintained at the 3’ end while also avoiding stable G quadruplex formation that may be observed with RNAs containing stretches of poly-G30. At substrate concentrations that far exceed enzyme concentration (200:1) the diribonucleotide substrate was already fully processed to nucleoside monophosphates by 30 minutes (Figure 1A)20. In contrast, longer substrates (i.e., from 3-mers to 7-mers) were not processed at their 3’ end, even at 30 minutes (Figures 1A and 1B). These results indicate that the length preference for exoribonuclease activity of Orn on diribonucleotides is even greater than mere differences in binding affinities. This strong substrate preference stands in stark contrast to previous studies arguing Orn acts as a general exoribonuclease that cleaves oligoribonucleotides with 2 to 7 residues in length19,22,23,25,26.

To determine if Orn can indeed cleave substrates longer than a diribonucleotide, the enzyme was incubated with RNA substrates at a 1:1 molar ratio. Under these conditions, the diribonucleotide substrate was completely processed to nucleoside monophosphates by the earliest time point, 20 seconds (Figure 1C and 1D). Orn_{Vc} also facilitated the degradation of the longer RNA substrates, but only after significantly longer incubation times. For example, it required 10 minutes and 30 minutes to fully degrade 3-mer and 4-mer RNAs, respectively (Figures 1C and 1D). Cleavage was reduced further for longer RNAs; only 40-53% of the 5-mer, 6-mer and 7-mer RNAs were processed to nucleoside
monophosphates at 30 minutes (Figures 1C and 1D), correlating with the weak affinities determined for these substrates (Table 1). Nonetheless, cleavage of the 7-mer required enzymatic activity since catalytically inactive Orn variants were unable to degrade the 7-mer (Figure 1 – figure supplement 1).

Of note, we observed a non-uniform distribution of degradation products for the longer RNA substrates. Specifically, the diribonucleotide intermediate was never observed as a reaction intermediate for the longer RNAs. This reaction pattern indicates that RNAs of more than two residues could accumulate, but that diribonucleotide RNAs were always rapidly processed to nucleoside monophosphates. Together, these results indicate that Orn exhibits a strong substrate preference for diribonucleotides over longer oligoribonucleotides – far greater than reported previously19,25. While assays here were performed at near-physiological ionic strength, prior studies often utilized buffer lacking salt (NaCl/KCl), which may at least in part contribute to the apparent differences in catalytic activity.

Structure of Orn complexes with pGpG and other linear diribonucleotides. To elucidate the molecular basis for these unique properties of Orn, we set out to gain a deeper understanding of the enzyme’s substrate specificity by determining Orn/substrate co-crystal structures. We initially determined the crystal structure of *P. aeruginosa* Orn (Orn\textsubscript{Pa}) with diribonucleotide substrate, however crystal packing contacts prevented substrate binding (data not shown). Instead, we were able to crystallize two representative homologs, Orn\textsubscript{Vc}6 and the human REXO2 (also known as small fragment nuclease or Sfn31), bound to the diribonucleotide pGpG (Figures 2A and 2B; Figure 2 – source data 1). Both proteins purified free of divalent cation, which was sufficient to prevent catalysis in crystals. Superimposing the two structures indicates their identical fold (rmsd of 0.75Å for the protomer; Figure 2 – figure supplement 1A), which is preserved in the substrate-free Orn structure determined
previously (rmsd of 0.54 Å for the protomer; Figure 2 – source data 1). The pGpG-bound structures reveal a narrow active site that is lined by the conserved acidic residues of the signature DEDD motif (D12, E14, and D112 of OrnVc; D15, E17, and D115 of REXO2) and the general base H158 or His162 in OrnVc or REXO2, respectively (Figures 2A, 2B and Figure 2 – figure supplements 1B and source data 2). In OrnVc, the bases of the diribonucleotide buttress against aromatic residues W61 and Y129, the latter being contributed from the second half-side of the dimeric enzyme. The corresponding residues, W64 and Y132, are conserved in REXO2. Residue L18 in OrnVc (L21 in REXO2) wedges in-between the two bases. Most notably, residues S108, R130, S135 and the hydroxyl group on Y129 (S111, R133, S138, and Y132 in REXO2) form hydrogen bonds with the 5' phosphate of pGpG, capping the substrate. This phosphate cap creates a major constriction of the active site, which is not observed in structurally related 3'-5' exoribonucleases such as RNase T or ExoI (Figures 2C and Figure 2 – figure supplement 1 and source data 2). RNase T and ExoI accommodate longer RNA substrates, facilitated by an expansive active site. The structural analysis correlates closely with sequence conservation of the phosphate cap motif, which is strict in Orn homologs but divergent in RNase T proteins (Figures 2D and Figure 2 – source data 2). Our structural analysis also suggests that modifications at the bases may be tolerated consistent with the observation that all native bases can be accommodated at the active site (Figure 2 – figure supplement 2). Modifications at the sugar or termini beyond a terminal 5'-phosphate will likely fit sub-optimally if at all.

Any attempts to obtain structures of OrnVc with longer RNA substrates (3-5 bases in length) only resolved diribonucleotides at the active site (data not shown), further suggesting a narrow active site that is selective for dinucleotide species. These results are consistent with two recent reports of structural data for Colwellia psychrerythraea Orn and REXO2 bound to substrates. In the case of OrnCp, crystallization was attempted with a 5-mer RNA, however only two bases were resolved at the
active site. A similar observation was made with REXO2 for RNA substrates, but a complex with a longer DNA-based ligand was obtained, which may not allow conclusions for RNA substrates. In the same report, RNase activity against longer RNA was observed with REXO2, but required a 20x molar excess of enzyme over RNA, likely not representing physiological conditions.

The phosphate cap is required for diribonucleotidase activity. To assess the impact on catalysis of the phosphate cap in comparison to other active site residues identified in the structural analysis, we introduced specific single-point mutations into OrnVc (Figure 3). All protein variants expressed stably in P. aeruginosa (Figure 3 – figure supplement 1). For two representative point mutants with alanine substitutions at a phosphate-cap or active-site/DEDD-motif residue, OrnVc-D12A or OrnVc-R130A, respectively, we showed that the purified proteins form stable dimers in solution, comparable to wild-type OrnVc (Figure 3 – figure supplement 2). Purified protein variants were evaluated for pGpG degradation. Mutations of the central phosphate cap residue R130 to alanine led to complete loss of catalytic activity, comparable to mutants in the DEDD active site motif (Figure 3A and Figure 3 – figure supplement 3) [20]. These protein variants were similarly unable to cleave the 7-mer (Figure 1 – figure supplement 1). We next asked whether OrnVc with specific point mutations could complement the deletion of orn in P. aeruginosa. P. aeruginosa Δorn accumulates pGpG that in turn inhibits c-di-GMP-specific phosphodiesterases [19,20]. As a net result, c-di-GMP accumulates in these cells, an effect that is associated with a hyper-biofilm and cell aggregation phenotype. While expression of wild-type OrnVc complements the P. aeruginosa Δorn resulting in a dispersed culture, complementation with variants that carry mutations in either the active site or phosphate cap residues results in cell aggregation indistinguishable from the Δorn phenotype (Figure 3B). Together, these experiments demonstrate that an intact phosphate cap is required for enzyme function.
Interaction of Orn with substrates. Structures of \(\text{Orn}_{\text{Vc}} \) (and REXO2) with different diribonucleotides, including di-purine, di-pyrimidine and mixed substrates, revealed identical binding poses (Figure 2 – figure supplement 2 and source data 1). Additional hydrogen bonding between purine residues and Orn in the 3’ or 5’ position correlates with a small, but detectable preference of \(\text{Orn}_{\text{Vc}} \) for purine-containing substrates (Figure 4). Together, the structural analysis uncovered Orn’s mode of substrate binding, which is conserved from bacteria to humans and indicates a unique selection for linear diribonucleotides with a 5’ phosphate. The requirement for the 5’ phosphate was tested with GpG as a competitor for Orn binding and cleavage of pGpG. Even in excess GpG, Orn bound pGpG and cleaved pGpG similar to untreated control (Figure 4 – figure supplements 1A and B) supporting the importance of the 5’ phosphate cap.

Another distinguishing factor between Orn and other exoribonucleases with similar activities is the apparent inhibition of Orn by 3’-phosphoadenosine 5’-phosphate (pAp), a metabolic byproduct of sulfate assimilation that accumulates upon lithium poisoning of pAp-phosphatase\(^26\). DHH/DHHA-type oligoribonucleases such as NrnA from \textit{Bacillus subtilis}, \textit{Mycobacterium tuberculosis} and \textit{Mycoplasma pneumoniae} are capable of dephosphorylating the pAp mononucleotide and their activity against oligoribonucleotides is unaffected by pAp\(^26,38\). In contrast, pAp has been described as a competitive inhibitor for \textit{E. coli} Orn and the human REXO2\(^25\). However, the oligo-cytosine RNAs used in these prior studies were labeled at their 5’ end with a bulky fluorescent dye moiety (usually a cyanine or Cy-dye)\(^19,25\); our aggregate data now indicate that these RNAs represent suboptimal substrates for Orn, given its stark requirement for a simple 5’ phosphate cap (Figure 2). This labeling strategy is therefore likely to incompletely assess native Orn activity by underestimating diribonucleotidase activity while also overestimating the effect of competitive inhibitors. Revisiting pAp binding to Orn, we show here
that Orn_{Vc} does not interact with radiolabeled pAp in the binding assay that was used to quantify oligoribonucleotide interactions with Orn (Figure 4 – figure supplement 1C). Furthermore, unlabeled pAp failed to competitively inhibit degradation of radiolabeled pGpG to GMP (Figure 4 – figure supplement 1A).

Orn is the only diribonucleotidase in *P. aeruginosa* grown under laboratory conditions. All available literature assumes Orn is a 3′-5′ exoribonuclease that is responsible for processing of short (between 2-7) oligoribonucleotides. Yet our structural and biochemical data suggest that the enzyme exhibits such a striking preference for diribonucleotide substrates that the *in vivo* function of Orn as a general exoribonuclease should be reconsidered. Therefore, we developed experimental conditions to measure Orn’s activity in cellular extracts. The *orn* gene is required for viability in most γ-proteobacteria, including *V. cholerae*; however, it is not essential for growth of *P. aeruginosa* under most conditions^{19,20}. Therefore, lysates were generated from *P. aeruginosa* strains, including parental PA14, ∆orn, and ∆orn complemented with *orn_{Vc}*. 5′³²P-radiolabeled 2-mer or 7-mer RNA was then added to each of these lysates (Figure 5). Aliquots of the mixtures were removed and analyzed by urea denaturing 20% PAGE at varying time intervals. Extracts from parental PA14 digested the entire radiolabeled diribonucleotide in less than 5 minutes (Figure 5A). In contrast, lysates from strains lacking Orn failed to show any signs of diribonucleotidase activity even at longer time points. Similarly, complementation with catalytically inactive alleles of *orn* (D¹²A, L¹⁸A and H¹⁵⁸A) also failed to clear the diribonucleotide (Figure 5 and Figure 5 – figure supplement 1). Diribonucleotidase activity in the lysates could be restored by ectopic expression of *orn* from a self-replicating plasmid or by addition of purified Orn (Figure 5A). These data confirm that cellular Orn is required for degrading...
diribonucleotides and no other cellular RNase of *P. aeruginosa* can substitute for Orn activity under these laboratory growth conditions.

When the 32P-7-mer RNA substrate was incubated in extracts from parental PA14 it was digested to a ladder of degradative intermediates including 6-mer, 5-mer, 4-mer and 3-mer RNAs (Figure 5B). Of note, while these intermediates and the final mononucleotide product accumulated over time, the 2-mer intermediate was never observed over the time course. In contrast, lysates from the Δorn mutant specifically accrued the diribonucleotide intermediate with no apparent production of its mononucleotide products. Ectopic expression of plasmid-borne *orn*, but not *orn D12A*, restored the degradation of the 7-mer to mononucleotides and the diribonucleotide intermediate could no longer be observed. Furthermore, the diribonucleotide intermediate that accumulated in the Δorn lysate was fully processed upon addition of purified Orn protein (Figure 5B). Together, these results show that *P. aeruginosa* accumulates a bottleneck of diribonucleotide intermediates in a Δorn background, which is only resolved upon addition of Orn. Degradation of RNA fragments with 3 or more residues by Orn is negligible in a cellular context, considering that Δorn lysates preserve nuclease activities for the processing of RNAs down to diribonucleotides. From these aggregate data we propose that Orn functions not as an oligoribonuclease as stated in the literature but instead functions as a specialized ribonuclease of diribonucleotide substrates (*i.e.*, a ‘diribonucleotidase’).

The diribonucleotide pool affects *P. aeruginosa* growth in addition to c-di-GMP. We noticed that PA14 Δorn had reduced growth on agar plates that is reminiscent of a small colony variant (SCV) phenotype (Figure 6). The SCV phenotype has been attributed previously to increased c-di-GMP levels. C-di-GMP binds to FleQ and activates transcription of the pel operon. In addition, c-di-GMP binds to the c-di-GMP-receptor PelD to increase the biosynthesis of the pel exopolysaccharide.
which enhances cell aggregation leading to a compact SCV morphology. Previous reports had shown that *P. aeruginosa Δorn* is unable to clear pGpG, which results in the elevation of c-di-GMP signaling and pel-dependent cell aggregation and biofilm mass.

To determine whether the functional impact of diribonucleotide build-up is due specifically to an increased pGpG level and its effect on c-di-GMP, we asked whether the SCV formation in the Δorn mutant is dependent on c-di-GMP processes. First, we confirmed that SCV formation in PA14 can be induced by elevated c-di-GMP levels through overexpression of diguanylate cyclases, such as PA1107, PA1120 and WspR (Figure 6A). As expected, the effect of c-di-GMP is due to increased production of the pel exopolysaccharide and biofilm formation since the PA14 ΔpelA mutant maintained normal colony morphology even when these diguanylate cyclases were overexpressed (Figure 6A). To determine whether the increase in the pool of pGpG and c-di-GMP is the only reason for small-colony growth in the Δorn mutant, a Δorn Δpel double mutant was tested. When Δorn Δpel was grown on agar, it also had an apparent SCV phenotype (Figure 6B). Complementation of Δorn and Δorn Δpel with active alleles of orn restored normal colony morphology, whereas inactive orn alleles failed to complement (Figure 6 – figure supplement 1). In every case, the colony morphology was the same between Δorn and Δorn Δpel indicating a second pathway that can restrict colony growth, but in this case independent of pel and c-di-GMP. Similar results were obtained for *P. aeruginosa* PAK strain (Figure 6 – figure supplement 2). These results indicate that increased pools of one or more of the diribonucleotides function to cause small-colony growth in Δorn in addition to the actions of pGpG on c-di-GMP signaling.

Conclusion
Orn is unique amongst exoribonucleases because it is essential in some γ-proteobacteria and is required to degrade the pGpG intermediate in c-di-GMP signaling. Yet the molecular and structural requirements for Orn were unknown. Our studies reveal that Orn is a dedicated diribonucleotidase in cells. This appears to be driven by a catalytic site that is restricted by a cap that mediates multiple interactions with the 5’ phosphate of diribonucleotide substrates. This constriction prevents longer substrates from binding with high affinity, rendering them poor substrates for catalytic cleavage. The discovery that Orn acts as a dedicated diribonucleotidase indicates that this activity clears a specific diribonucleotide bottleneck in global RNA degradation (Figure 7). Prior studies have shown that orn depletion can lead to accumulation of diribonucleotides and longer oligoribonucleotides in some cellular backgrounds. The increase in oligoribonucleotides longer than dimers in cells may occur through feedback inhibition of other enzymes in the RNA degradation pathway, in analogy to the impact of pGpG on c-di-GMP-degrading phosphodiesterases and c-di-GMP signaling (Figure 7). Whether the effect of diribonucleotides on essentiality is due to general processes such as RNA degradation, altered transcription, specific interactions with essential proteins, or a combination of these remains to be evaluated in this context. Our studies therefore reveal a key step in RNA degradation, the enzymatic cleavage of diribonucleotides into mononucleotides, and set the stage to address how diribonucleotide accumulation is detrimental to cell survival.
Methods

Key Resources Table

<table>
<thead>
<tr>
<th>Strain, strain background (<i>P. aeruginosa</i>)</th>
<th>Designation</th>
<th>Source or reference</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA14</td>
<td>Rahme, et al. Science, 1995; PMID 7604262</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA14 ∆orn</td>
<td>Orr, et al, PNAS 2015; PMID: 26305945</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA14 ∆orn ∆pelA-G</td>
<td>Orr, et al, PNAS 2015; PMID: 26305945</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAK</td>
<td>Bradley, Virology 1974; PMID: 4206974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAK ∆orn</td>
<td>This study</td>
<td>Generated using pEX-Gn-∆orn (PAK)</td>
<td></td>
</tr>
<tr>
<td>XL10-Gold</td>
<td>Agilent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stellar cells</td>
<td>Takara/Clontech</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL21(DE3)</td>
<td>New England Biolabs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEB T7Iq</td>
<td>New England</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strain Background (E. coli)</td>
<td>Biolabs</td>
<td>Cloned from custom DNA fragment (see below) for purification of His6-SUMO-OrnVc, OrnVc</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Recombinant DNA reagent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pET28-His6-SUMO-OrnVc</td>
<td>This study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pET28-His6-SUMO-Rexo2</td>
<td>This study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pDONR221-VC0341 (ornVc)</td>
<td>Rolfs, et al, PNAS 2008; PMID: 18337508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pDONR221-ornVc D12A</td>
<td>This study</td>
<td>Site-directed mutagenesis to introduce alanine at D12 position</td>
<td></td>
</tr>
<tr>
<td>pDONR221-ornVc L18A</td>
<td>This study</td>
<td>Site-directed mutagenesis to introduce alanine at L18 position</td>
<td></td>
</tr>
<tr>
<td>pDONR221-ornVc Q111A</td>
<td>This study</td>
<td>Site-directed mutagenesis to introduce alanine at Q111 position</td>
<td></td>
</tr>
<tr>
<td>pDONR221-ornVc R130A</td>
<td>This study</td>
<td>Site-directed mutagenesis to introduce alanine at R130 position</td>
<td></td>
</tr>
<tr>
<td>pDONR221-ornVc Y129A</td>
<td>This study</td>
<td>Site-directed mutagenesis to introduce alanine at Y129 position</td>
<td></td>
</tr>
<tr>
<td>pDONR221-ornVc W61A</td>
<td>This study</td>
<td>Site-directed mutagenesis to introduce alanine at W61 position</td>
<td></td>
</tr>
<tr>
<td>pDONR221-ornVc H66A</td>
<td>This study</td>
<td>Site-directed mutagenesis to introduce alanine at H66 position</td>
<td></td>
</tr>
<tr>
<td>pDONR221-ornVc H158A</td>
<td>This study</td>
<td>Site-directed mutagenesis to introduce alanine at H158 position</td>
<td></td>
</tr>
<tr>
<td>pVL847-ornVc</td>
<td>Orr, et al, PNAS 2015; PMID: 26305945</td>
<td>OrnVc from pDONR cloned into pVL847 for purification of His-MBP-OrnVc, OrnVc</td>
<td></td>
</tr>
<tr>
<td>Recombinant DNA reagent</td>
<td>Expression vector</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pVL847-ornVc D12A</td>
<td>This study</td>
<td>D12A from pDONR cloned into pVL847 for purification of His-MBP-OrnVc D12A, OrnVc D12A</td>
</tr>
<tr>
<td></td>
<td>pVL847-ornVc L18A</td>
<td>This study</td>
<td>L18A from pDONR cloned into pVL847 for purification of His-MBP-OrnVc L18A, OrnVc L18A</td>
</tr>
<tr>
<td></td>
<td>pVL847-ornVc Q111A</td>
<td>This study</td>
<td>Q111A from pDONR cloned into pVL847 for purification of His-MBP-OrnVc Q111A, OrnVc Q111A</td>
</tr>
<tr>
<td></td>
<td>pVL847-ornVc R130A</td>
<td>This study</td>
<td>R130A from pDONR cloned into pVL847 for purification of His-MBP-OrnVc R130A, OrnVc R130A</td>
</tr>
<tr>
<td></td>
<td>pVL847-ornVc Y129A</td>
<td>This study</td>
<td>Y129A from pDONR cloned into pVL847 for purification of His-MBP-OrnVc Y129A, OrnVc Y129A</td>
</tr>
<tr>
<td></td>
<td>pVL847-ornVc W61A</td>
<td>This study</td>
<td>W61A from pDONR cloned into pVL847 for purification of His-MBP-OrnVc W61A, OrnVc W61A</td>
</tr>
<tr>
<td></td>
<td>pVL847-ornVc H66A</td>
<td>This study</td>
<td>H66A from pDONR cloned into pVL847 for purification of His-MBP-OrnVc H66A, OrnVc H66A</td>
</tr>
<tr>
<td></td>
<td>pVL847-ornVc H158A</td>
<td>This study</td>
<td>H158A from pDONR cloned into pVL847 for purification of His-MBP-OrnVc H158A, OrnVc H158A</td>
</tr>
<tr>
<td></td>
<td>pMMB-Gn</td>
<td></td>
<td>Furste, et al, Gene 1986; PMID: 3549457</td>
</tr>
<tr>
<td>Recombinant DNA reagent</td>
<td>PMMB-Gn-PA1107</td>
<td>Kulesakara, et al, PNAS 2006; PMID: 16477007</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Recombinant DNA reagent</td>
<td>PMMB-Gn-PA1120</td>
<td>Kulesakara, et al, PNAS 2006; PMID: 16477007</td>
<td></td>
</tr>
<tr>
<td>Recombinant DNA reagent</td>
<td>PMMB-Gn-PA3702 (wspR)</td>
<td>Kulesakara, et al, PNAS 2006; PMID: 16477007</td>
<td></td>
</tr>
<tr>
<td>Recombinant DNA reagent</td>
<td>PMMB-Ap-VC0341 (ornVc)</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Recombinant DNA reagent</td>
<td>PMMB-Ap-ornVc D12A</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Recombinant DNA reagent</td>
<td>PMMB-Ap-ornVc L18A</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Recombinant DNA reagent</td>
<td>PMMB-Ap-ornVc Q111A</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Recombinant DNA reagent</td>
<td>PMMB-Ap-ornVc R130A</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Recombinant DNA reagent</td>
<td>PMMB-Ap-ornVc Y129A</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Recombinant DNA reagent</td>
<td>PMMB-Ap-ornVc W61A</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Recombinant DNA reagent</td>
<td>PMMB-Ap-ornVc H66A</td>
<td>This study</td>
<td></td>
</tr>
</tbody>
</table>

- Orn from pDONR cloned into PMMB for expressing in *P. aeruginosa*
- D12A from pDONR cloned into PMMB for expressing in *P. aeruginosa*
- L18A from pDONR cloned into PMMB for expressing in *P. aeruginosa*
- Q111A from pDONR cloned into PMMB for expressing in *P. aeruginosa*
- R130A from pDONR cloned into PMMB for expressing in *P. aeruginosa*
- Y129A from pDONR cloned into PMMB for expressing in *P. aeruginosa*
- W61A from pDONR cloned into PMMB for expressing in *P. aeruginosa*
- H66A from pDONR cloned into PMMB for expressing in *P. aeruginosa*
<table>
<thead>
<tr>
<th>Recombinant DNA reagent</th>
<th>pMMB-Ap-ornVc H158A</th>
<th>This study</th>
<th>H158A from pDONR cloned into pMMB for expressing in P. aeruginosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reombinant DNA reagent</td>
<td>pEX-Gn-∆orn (PAK)</td>
<td>This study</td>
<td>OrnPA (Orr, et al, PNAS 2015) cloned into pJHA for expressing in P. aeruginosa</td>
</tr>
<tr>
<td>Reombinant DNA reagent</td>
<td>pJHA-Gn</td>
<td>This study</td>
<td>Orn from pDONR cloned into pJHA for expressing in P. aeruginosa</td>
</tr>
<tr>
<td>Reombinant DNA reagent</td>
<td>pJHA-Gn-ornPa</td>
<td>This study</td>
<td>D12A from pDONR cloned into pJHA for expressing in P. aeruginosa</td>
</tr>
<tr>
<td>Reombinant DNA reagent</td>
<td>pJHA-Gn-ornVc</td>
<td>This study</td>
<td>L18A from pDONR cloned into pJHA for expressing in P. aeruginosa</td>
</tr>
<tr>
<td>Reombinant DNA reagent</td>
<td>pJHA-Gn-ornVc</td>
<td>This study</td>
<td>Q111A from pDONR cloned into pJHA for expressing in P. aeruginosa</td>
</tr>
<tr>
<td>Reombinant DNA reagent</td>
<td>pJHA-Gn-ornVc</td>
<td>This study</td>
<td>R130A from pDONR cloned into pJHA for expressing in P. aeruginosa</td>
</tr>
<tr>
<td>Reombinant DNA reagent</td>
<td>pJHA-Gn-ornVc</td>
<td>This study</td>
<td>Y129A from pDONR cloned into pJHA for expressing in P. aeruginosa</td>
</tr>
<tr>
<td>Reombinant DNA reagent</td>
<td>pJHA-Gn-ornVc</td>
<td>This study</td>
<td>W61A from pDONR cloned into pJHA for expressing in P. aeruginosa</td>
</tr>
</tbody>
</table>
Recombinant DNA reagent

Recombinant DNA reagent

This study

H66A from pDONR cloned into pJHA for expressing in *P. aeruginosa*

H158A from pDONR cloned into pJHA for expressing in *P. aeruginosa*

Antibody

Mouse anti-HA monoclonal antibody

Goat Anti-Mouse IgG-HRP conjugate

Sigma; catalog number H9658

Sigma; catalog number A9917

1:5000

1:5000

Sequence based reagent

5'-

GGATCCATGGCAG
CCGCTGAAAGCAT
GGGCTGAGCAGT
GGAAATGACCGGT
CTGGATATTGAAAA
AGATCAGATTATTG
AAATGCTGTCGCT
GATTACGGATAGC
GATCTGAAATATTCT
GGCGAGAGGTCCG
AATCGGATTATCATG
CTAATGCGTGGCTG
TAAAGAACATCAG
GACACAGCGTTCT
GGACAAAGCTGTT
AAAGAAAGCACCAGC
TACACTGACACAG
GCCGAATATGAATT
TCTGAGCTTTGTGC
GTACACAGACCCT
TCCGGGTCTGTTG
CCGCTGGCATGTA
ATACCCGTTCACTGAA
GATCAAAAGTTCT
GGATAGCATTATGC
CGCAGTTTATGAAG
CATCTGCAATATCG
CATTATTGATGTGA
GCACCGTTAAGA
ACTGTGTCGTCGTT
GGTATCCCGAAGA
ATATGAGTTTGCAC

GeneArt

custom DNA fragment for REXO2 that is codon-optimized for *E. coli*
CGAAAAAACGAGC
AAGCCATCGTGCA
CTGGATGATATTAG
CGAAAGCATCAAA
GAGCTGCAGTTTTA
TCGCAACACATCT
TCAAAAAGAAAATC
GACGAGAAAAAAC
GCAAAATCATCGAA
AACGGCGAAAAACG
AAAAAACCCTTAGC
TAAGCGGCGGC-3'
Sequence based reagent

5'-
GGATCCATGAGCT
TTAGCGATCAGAAT
CTGATTTGGATTGA
TCTGGAAATGACC
GGTCTGGACCCGG
AAATGCATAAAAT
CATTCGAAATGGCAA
CCATCGTGACCGA
TAGCGAACTGAATA
TTCTGGTGATGCAA
TTCATCAGCCGG
AAAGCGAAACTGAC
AAAAATGGATGAAAT
GTGATACCACCAC
CCATACGGCAAGGC
GGTCTGGATTCGAC
GTGGTCCCAGACAG
CAAGTCTAGCGAA
GAAGAAGCAATTG
ATCAGACCTGGGC
ATTTCTGAAACAGT
GGGTTCCCGGAAGG
TAAAGGCCCGGATTT
GTGGTAAATAGCTT
GTCAGGGATCGGT
GCTTTCTGATACAA
CATATGCCTCGTCT
GGAAGCCTATTTCC
ATTATCGTTTATA
TTGATGTGAGCCAC
CATCAAGAAGCTGA
GGCGTGGTTGGGCA
GCGGGAAGTCTTG
AAAGAATTTAGCAA
AACCGGTAGCCCC
ATGCAGCTGGATG
ATATCGTGGAAACG
ATTGCAGGCTGTC
AGTATTATCGTTAA
GCGGTGTTTAAAAAT
CTAAGCGGCGCCG-3'

GeneArt

custom DNA fragment for OrnVc that is codon-optimized for E. coli

Sequence based reagent

5'-GG-3' Sigma

5'-AGG-3' Sigma

5'-AAGG-3' Sigma
<table>
<thead>
<tr>
<th>Based reagent</th>
<th>Sequence</th>
<th>5'-3'</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence based reagent</td>
<td>5'-AAAGG-3'</td>
<td>Sigma</td>
<td></td>
</tr>
<tr>
<td>Sequence based reagent</td>
<td>5'-AAAAGG-3'</td>
<td>Sigma</td>
<td></td>
</tr>
<tr>
<td>Sequence based reagent</td>
<td>5'-AAAAAGG-3'</td>
<td>Sigma</td>
<td></td>
</tr>
<tr>
<td>Sequence based reagent</td>
<td>5'-pGG-3'</td>
<td>Biolog; catalog number P023-01</td>
<td></td>
</tr>
<tr>
<td>Sequence based reagent</td>
<td>5'-pAA-3'</td>
<td>Biolog; catalog number P033-01</td>
<td></td>
</tr>
<tr>
<td>Sequence based reagent</td>
<td>5'-pAG-3'</td>
<td>GE Healthcare Dharmacon</td>
<td></td>
</tr>
<tr>
<td>Sequence based reagent</td>
<td>5'-pGA-3'</td>
<td>GE Healthcare Dharmacon</td>
<td></td>
</tr>
<tr>
<td>Sequence based reagent</td>
<td>5'-pGC-3'</td>
<td>GE Healthcare Dharmacon</td>
<td></td>
</tr>
<tr>
<td>Sequence based reagent</td>
<td>5'-pCG-3'</td>
<td>GE Healthcare Dharmacon</td>
<td></td>
</tr>
<tr>
<td>Sequence based reagent</td>
<td>5'-pCU-3'</td>
<td>GE Healthcare Dharmacon</td>
<td></td>
</tr>
<tr>
<td>Software, algorithm</td>
<td>Prism</td>
<td>GraphPad</td>
<td></td>
</tr>
<tr>
<td>Software, algorithm</td>
<td>XDS</td>
<td>Kabsch, Acta Crystallogr D, 2010; PMID: 20124693</td>
<td>Distributed through SBGrid</td>
</tr>
<tr>
<td>Software, algorithm</td>
<td>Pointless</td>
<td>Evans, Acta Crystallogr D, 2006; PMID: 16369096</td>
<td>Distributed through SBGrid</td>
</tr>
<tr>
<td>Software, algorithm</td>
<td>Scala</td>
<td>Evans, Acta Crystallogr D, 2006; PMID: 16369096</td>
<td>Distributed through SBGrid</td>
</tr>
<tr>
<td>Software, algorithm</td>
<td>Phenix</td>
<td>Adams et al., Acta Crystallogr D, 2010; PMID: 20124702</td>
<td>Distributed through SBGrid</td>
</tr>
</tbody>
</table>
Cloning, protein expression and purification. Orn genes from *Vibrio cholerae* O1 El Tor VC0341 (residues 1-181) and *Homo sapiens* REXO2 (residues 33-237) were synthesized by Geneart (Life Technologies). Genes were cloned by ligation between BamHI and NotI sites of a modified pET28a vector (Novagen) yielding N-terminally His₆-tagged small ubiquitin-like modifier (SUMO) fusion proteins cleavable by recombinant Ulp-1 protease.

Orn proteins were overexpressed in *E. coli* BL21 T7 Express cells (New England Biolabs). Fresh transformants were grown in Terrific Broth (TB) supplemented with 50 μg/mL kanamycin at 37°C to an OD₆₀₀ ~ 1.0, at which point the temperature was reduced to 18°C and expression was induced by addition of 0.5 mM IPTG. Cells were harvested after 16 hours of expression by centrifugation and resuspended in a minimal volume of Ni-NTA binding buffer (25 mM Tris-Cl, 500 mM NaCl, 20 mM imidazole, pH 8.5) followed by flash freezing in liquid nitrogen.

Cells were thawed and lysed by sonication. Cell debris was removed by centrifugation and clarified soluble lysate was incubated with Ni-NTA resin (Qiagen) pre-equilibrated with Ni-NTA binding buffer. Following one hour of binding, the resin was washed three times with 10 column volumes of Ni-NTA binding buffer, and then eluted with six column volumes of Ni-NTA elution buffer (25 mM Tris-Cl, 500 mM NaCl, 350 mM imidazole, pH 8.5). Eluates were buffer exchanged into gel filtration buffer (25 mM Tris-Cl, 150 mM NaCl, pH 7.5) via HiPrep 26/10 desalting column (GE Healthcare), followed by overnight incubation with Ulp-1 to cleave off the His₆-tagged SUMO moiety. Untagged Orn proteins were recovered in the flow-through of a HisTrap Ni-NTA column (GE Healthcare), separated from His₆-SUMO, uncleaved proteins and His₆-tagged Ulp-1. Orn was concentrated by Amicon Ultra 10K concentrator prior to loading onto a HiLoad 16/60 Superdex 200 gel filtration column (GE Healthcare) equilibrated in gel filtration buffer. Fractions containing Orn were pooled and concentrated to 100 mg/mL, frozen in liquid nitrogen, and stored at -80°C.
Bacterial strains, plasmids and growth conditions. Strains and plasmids are listed in Key Resources table. *P. aeruginosa* is routinely grown in LB supplemented with the appropriate antibiotic (50 μg/mL carbenicillin or 75 μg/mL gentamicin) at 37 °C.

Protein Crystallography. REXO2-RNA and Orn$_{vc}$-RNA complexes (pGpG and pApA from BioLog Life Science Institute, other nucleotides from GE Healthcare Dharmacon) were formed prior to crystallization by mixing a 1:2 molar ratio of Orn:RNA in gel filtration buffer, followed by incubation for 30 min at the crystallization temperature. Orn-RNA complexes (10-30 mg/ml) were crystallized via hanging-drop vapor diffusion by mixing equal volumes (0.8 μl) of sample with reservoir solution. Orn$_{vc}$ crystals grew at 20°C over a reservoir solution that was composed of 0.1 M BisTris (pH 5.5), 17% polyethylene glycol 3350, and 20% xylitol. Crystals were flash-frozen in liquid nitrogen. REXO2 crystals grew at 4°C, using a reservoir comprised of 0.2 M sodium malonate (pH 5.5) and 15-20% polyethylene glycol 3350. REXO2 crystals were soaked in cryoprotectant of reservoir solution supplemented with 25% glycerol prior to flash freezing with liquid nitrogen. All crystals were stored in liquid nitrogen. Data were collected by synchrotron radiation at 0.977 Å on frozen crystals at 100 K at beamline F1 of the Cornell High Energy Synchrotron Source (CHESS). Diffraction data sets were processed using XDS, Pointless, and Scala. The initial structures were solved by Molecular Replacement using the software package Phenix and the unpublished coordinates of *E. coli* Orn (PDB: 2igi) as the search model. Manual model building and refinement were carried out with Coot and Phenix, respectively. Illustrations were prepared in Pymol (Version 2.2.0, Schrodinger, LLC). All software packages were accessed through SBGrid. Crystallographic statistics are shown in Figure 2 – source data 1.

Site-directed mutagenesis. To create the point mutants of orn$_{vc}$, mutations were generated by using the Q5 Site-Directed Mutagenesis Kit (New England Biolabs). All mutations were verified by sequencing.

Western blot analysis. Overnight cultures were diluted to OD$_{600}$ of ~0.02 in media with 0.2% arabinose with 75 μg/mL gentamicin. Culture density was monitored by OD$_{600}$. At OD$_{600}$ ~1.5, cells were collected by centrifugation and resuspended in 1/15 volume of 1x PBS. Proteins were immediately precipitated by a modified MeOH/CHCl$_3$ procedure (sample/MeOH/CHCl$_3$:1/1/0.25).
Samples were separated on 12% SDS-PAGE, transferred to PVDF membranes and blocked with Tris buffered saline (50 mM Tris, pH 7.4, 200 mM NaCl) with 5% non-fat milk. HA-tags were detected using mouse anti-HA (Sigma H9658) and goat anti-mouse IgG-HRP conjugate (Sigma A9917). HRP signal was developed using chemiluminescence per manufacture protocol (Sigma).

Labeling of RNAs. 5’ un-phosphorylated RNAs were purchased from TriLink Biotechnologies or Sigma. Each RNA was subjected to radioactive end-labeling or non-radioactive phosphorylation by T4 Polynucleotide Kinase (New England Biolabs). Each RNA was subjected to phosphorylation with equimolar concentrations of either 32P-γ-ATP or ATP, T4 PNK, and 1X T4 PNK Reaction Buffer. Reactions comprising a final concentration of either 0.5 µM radiolabeled RNA or 2.0 µM phosphorylated RNA were incubated at 37 °C for 40 minutes, followed by heat inactivation of T4 PNK at 65 °C for 20 minutes.

Protein expression and purification for biochemical assays. *E. coli* T7Iq strains harboring expression vector pVL847 expressing an His$_{10}$-MBP-Orn and His$_{10}$-MBP-Orn mutants from *V. cholerae* were grown overnight, subcultured in M9 fresh media supplemented with 15 µg/ml gentamicin and grown to approximately OD$_{600}$ 0.5~1.0 at 30 °C. Expression was induced with 1 mM IPTG for 4 hours. Induced bacteria were collected by centrifugation and resuspended in 10 mM Tris, pH 8, 100 mM NaCl, and 25 mM imidazole. After addition of 10 µg/mL DNase, 25 µg/mL lysozyme, and 1 mM PMSF, bacteria were lysed by sonication. Insoluble material was removed by centrifugation. The His-fusion protein was purified by separation over a Ni-NTA column. Purified proteins were pooled and dialyzed for 1 hour and overnight against 10 mM Tris, pH 8, 100 mM NaCl. The proteins were dialyzed for 3 hours in 10 mM Tris, pH 8, 100 mM NaCl, and 50% (vol/vol) glycerol, aliquoted, and flash frozen with liquid nitrogen and stored at –80 °C.

Size-exclusion chromatography coupled multiangle light scattering (SEC-MALS). 5 mg/ml (0.24 mM) of purified protein (wild-type Orn$_{Vc}$, Orn$_{Vc}$-D12A, or Orn$_{Vc}$-R130A) was injected onto a Superdex 200 Increase 10/300 column (GE Healthcare) equilibrated with gel filtration buffer (25 mM Tris-Cl, pH 7.5, 150 mM NaCl). Samples were run continuously at a flow rate of 0.75 ml/min through the gel filtration column coupled to a static 18-angle light scattering detector (DAWN HELIOS-II) and a refractive index detector (Optilab T-rEX), with data being collected every second. Data analysis was
performed with ASTRA VI, yielding the molar mass and mass distribution (polydispersity) of the sample, using monomeric BSA (Sigma; 5 mg/ml) to normalize the light scattering detectors and as a control sample.

Preparation of whole cell lysates. Overnight cultures of *P. aeruginosa* PA14 WT, ∆orn mutant, or complemented strains were subcultured into fresh media with antibiotic and 1 mM IPTG, grown at 37 °C with shaking to OD₆₀₀ ~2.5. All bacteria samples were collected by centrifuge and resuspended in 1/10 volume of 100 mM KCl, and 100 mM Tris, pH 8, also supplemented with 25 µg/mL lysozyme, 10 µg/mL DNase, and 1 mM PMSF and stored at −80 °C.

Oligoribonuclease cleavage reactions. Phosphorylated RNA (1.0 µM), including trace amounts of radiolabeled substrate, was subjected to cleavage by either 5.0 nM or 1.0 µM purified Orn at room temperature. These reactions were in the presence of 10 mM Tris, pH 8.0, 100 mM NaCl, and 5 mM MgCl2. At the appropriate times, aliquots of the reaction were removed and quenched in the presence of 150 mM EDTA on ice and heat inactivated at 95 °C for 5 minutes. Activity of whole cell lysates against ³²P-labeled oligoribonucleotide substrates was performed at room temperature in reaction buffer (10 mM Tris, pH 8, 100 mM NaCl, and 5 mM MgCl2). At the indicated times, the reaction was stopped by the addition of 0.2 M EDTA and heated at 98 °C for 5 minutes. Samples were separated on denaturing 20% PAGE containing 1x TBE and 4 M urea. The gels were imaged using Fujifilm FLA-7000 phosphorimager (GE) and analyzed for the appearance of truncated ³²P-labeled products. The intensity of the radiolabeled nucleotides was quantified using Fujifilm Multi Gauge software v3.0.

DRaCALA measurement of dissociation constants. To measure <i>K_d</i>, serial dilutions of purified His₁₀-MBP-Orn or His₁₀-MBP Orn mutants in binding buffer (10 mM Tris, pH 8, 100 mM NaCl, and 5 mM CaCl2) were mixed with radiolabeled nucleotides, applied to nitrocellulose sheets, dried, imaged and <i>K_d</i> values were calculated as described previously.^{29,56}

Aggregation assay. A colony of each strain of *P. aeruginosa* grown in LB agar plates supplemented with 50 µg/mL carbenicillin was inoculated into borosilicate glass tubes containing 2.5 mL of LB supplemented with 0.1 mM IPTG. The cultures were placed in a fly-wheel in 37 °C incubator to spin
for 18-22 hours. Culture tubes were allowed to settle at room temperature for 10 min and photographed.

Colony morphology. Indicated strains are grown overnight at 37 °C in LB agar with either 50 µg/mL of carbenicillin or 15 µg/mL of gentamicin, as appropriate. Three independent colonies are inoculated into LB with the appropriate antibiotics at 37 °C with shaking. The bacteria were subcultured and grown until OD$_{600}$ between 1.0-1.5. All cultures were diluted to ~10,000 CFU per mL. To observe colony size of multiple colonies of multiple strains, 10 µL of each strain were dripped in parallel on the same LB plates with the appropriate antibiotic and indicated IPTG conditions to ensure all strains were grown with the same media and conditions. For all strains tested, the control strains were always included on the same plate.

Data deposition. The atomic coordinates and structure factors have been deposited in the Protein Data Bank, www.rcsb.org (PDB ID codes 6N6A, 6N6C, 6N6D, 6N6E, 6N6F, 6N6G, 6N6H, 6N6I, 6N6J, and 6N6K).

Acknowledgement

This work was supported by the NIH via grant R01GM123609 (H.S.), R01AI110740 (V.T.L.), R01AI142400 (to H.S, W.C.W. and V.T.L.), Cystic Fibrosis Foundation (CF Foundation) LEE16G0 (V.T.L.) and National Science Foundation (NSF) MCB1051440 (W.C.W.). C.A.W. was supported in part by the National Institutes of Health (NIH) training grant T32-GM080201. CHESS is supported by the NSF & NIH/NIGMS via NSF award DMR-1332208, and the MacCHESS resource is supported by NIH/NIGMS award GM103485.
Table 1. Quantitative measurement of length-dependent oligoribonucleotide affinities.

<table>
<thead>
<tr>
<th>Substrate(^a)</th>
<th>Dissociation constant (K_d) (nM)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG</td>
<td>90 +/- 9</td>
</tr>
<tr>
<td>AGG</td>
<td>630 +/- 80</td>
</tr>
<tr>
<td>AAGG</td>
<td>890 +/- 90</td>
</tr>
<tr>
<td>AAAGG</td>
<td>2,560 +/- 170</td>
</tr>
<tr>
<td>AAAAGG</td>
<td>3,830 +/- 370</td>
</tr>
<tr>
<td>AAAAAAGG</td>
<td>3,750 +/- 530</td>
</tr>
</tbody>
</table>

\(^a\): RNAs were labeled with \(^{32}P\) at their 5'-end. \(^b\): Affinities were measured using an established binding assay for radiolabeled RNAs \(^{29,56}\).
Figure Legends

Figure 1. Orn has a stark preference for diribonucleotide cleavage in vitro. RNA nucleotides 2 to 7 residues in length (1 μM, containing the corresponding 32P-labeled RNA tracer) were each subjected to cleavage over time with 5 nM (A, B) or 1,000 nM Orn$_{Vc}$ (C, D). Aliquots of each reaction were stopped at indicated times, and assessed by denaturing 20% PAGE (A, C). Quantification of the intensities of bands corresponding to the amount of uncleaved initial oligonucleotide over time are plotted as the average and SD of three independent experiments (B, D).

Figure 1 - figure supplement 1. Catalytic residues of Orn$_{Vc}$ are required for degradation for 32P-AAAAAGG in vitro. Degradation of 32P-AAAAAGG by purified indicated His$_{10}$-MBP-Orn$_{Vc}$ variants with 5 nM (A) or 1 µM (B). Samples were stopped at indicated time and analyzed by denaturing 20% PAGE. Representative gel images of two independent assays are shown.

Figure 2. Structures reveal Orn’s conserved substrate preference for diribonucleotides. Crystal structures of pGpG-bound *V. cholerae* Orn (A) and human REXO2 (B) are shown in comparison to *E. coli* RNase T bound to substrate (PDB 3nh1; 34) (C), another DnaQ-fold 3’-5’ exoribonuclease with a DEDD(h) active site motif. The top panels show ribbon representations of the dimeric enzymes. The insets are surface representations of the enzymes’ active sites shown in similar orientations. The bottom panel describes the active site residues involved in RNA binding and catalysis. Residue numbering for REXO2 refers to its cytosolic isofrom lacking the mitochondria-targeting pre-sequence.

Figure 2 – figure supplement 1. Structural comparison of Orn orthologs, RNase T and Exo I. (A) Superposition of Orn$_{Vc}$ with REXO2 (left) and the substrate-free state of Orn from *Xanthomonas campestris* (PDB 2gbz; 32) (right). Rmsd values are reported for the alignment of a monomer. (B) Surface properties of Orn enzymes. An alignment of Orn orthologs was used to map conservation scores onto the solvent accessible surface of Orn$_{Vc}$ (left). High degree of conservation overlaps with the acidic active site observed in the electrostatic potential map calculated with the APBS software 58 and based on Orn$_{Vc}$ (right). (C) Active-site view of *E. coli* RNase T bound to dAAC (PDB 3v9z; 33). (D) Active-site view of *E. coli* Exo I bound to dT13 (PDB 4jrp; 35).

Figure 2 – source data 1. Data collection and refinement statistics.

Figure 2 – source data 2. Sequences used to calculate surface conservation and generate Weblogos.
References

Figure 2 - figure supplement 2. Structural comparison of OrnVc and REXO2 bound to diverse diribonucleotides. (A) Crystal structures of REXO2 bound to pApA and pApG. The structural overview (left) shows a C-terminal helix that is unique to Orn orthologs in higher eukaryotes and in the current crystal forms is stabilized by crystal packing contacts. (B) Crystal structures of OrnVc bound to di-purine (pApA, pApG, pGpA), purine-pyrimidine (pGpC, pCpG), and di-pyrimidine (pCpU) substrates. Views are identical to those shown in Figure 2 for the REXO2:pGpG and Orn:pGpG complexes.

Figure 3. Functional importance of active-site and phosphate-cap residues for Orn function. (A) In vitro enzyme activity. Degradation of ³²P-pGpG (1 µM) by purified wild-type OrnVc or variants with alanine substitutions (5 nM) at the indicated sites was assessed. Samples were stopped at the indicated times and analyzed by denaturing 20% PAGE. Representative gel images are shown with the indicated RNA size. The graphs show means and SD of three independent experiments. (B) In vivo activity of alanine substituted ornVc alleles to complement P. aeruginosa Δorn. Overnight cultures of the indicated strains were allowed to stand for 30 minutes without agitation to allow bacterial aggregates to sediment. Representative images of the cultures of triplicated assays are shown.

Figure 3– figure supplement 1. Immunoblot analysis of Orn in P. aeruginosa Δorn expressing indicated orn alleles. Proteins in whole cell lysates of strains expressing the indicated HA-tagged orn allele were separated by 12% SDS-PAGE and probed with anti-HA antibodies. All images were performed in duplicate independently. A representative image of two independent experiments is shown.

Figure 3 – figure supplement 2. Molecular weight determination indicates that OrnVc variants with point mutations at the phosphate cap and active site remain dimeric. (A) Absolute molecular weights (black data points across elution peaks are plotted on the right axis; theoretical monomer and dimer molecular weights, horizontal dashed lines) of wild-type OrnVc and point mutants were determined using SEC-MALS (90°-light scattering: colored, solid lines; refractive index signal: black, dashed lines; plotted on the left axis).

Figure 3 – figure supplement 3. pGpG degradation by purified wild-type OrnVc or variants with indicated alanine substitutions. 1 µM pGpG was treated with 5 nM of the indicated Orn protein and sampled at indicated time points. The graphs show quantification of three independent data sets, of which representative radiographs are shown in Figure 3A.
Figure 3 – figure supplement 4. Contribution of catalytic residues and His₁₀-MBP tag to binding interaction between Orn_{vc} and pGpG. The dissociation constants (K_d) of indicated purified (A) His₁₀-MBP-Orn_{vc} variants and (B) untagged Orn_{vc} to pGpG were measured by DRaCALA. Fraction bound from data was plotted and determined by nonlinear regression. All data shown represent average and SD of three independent experiments.

Figure 4. Orn_{vc} cleaves all diribonucleotides. (A) Orn_{vc} (5nM) was incubated with di-purine (pRpR), purine-pyrimidine (pRpY or pYpR), or di-pyrimidine (pYpY) diribonucleotides (1 μM) containing the corresponding ³²P-labeled RNA tracer. Aliquots of each reaction were stopped at the indicated times and assessed by denaturing 20% PAGE. (B) Quantification of the intensities of bands corresponding to the amount of diribonucleotide cleaved at the 10 min time point. Results are the average and SD of duplicate independent experiments. Orn cleaves all diribonucleotides to nucleoside monos phosphates, albeit to varying extents. Diribonucleotides consisting of two purines (pRpR) were hydrolyzed most efficiently, with over 90% of starting RNAs processed by 10 minutes. A majority (>75%) of diribonucleotides with a 5' purine (pRpY) were also processed by the 10-minute endpoint. However, diribonucleotides with a 5' pyrimidines exhibited moderately reduced levels of cleavage. Di-pyrimidine (pYpY) substrates, and in particular pUpC and pCpC, showed the slowest turnover from the substrates tested. These results demonstrate that while all diribonucleotides are acceptable substrates for Orn, the enzyme is likely to exhibit moderate preferences for diribonucleotides that contain a 5' purine.

Figures 4 – figure supplement 1. Effect of GpG and pAp on Orn activity. (A) Cleavage of 130 nM ³²P-pGpG by 5 nM Orn in the absence or presence of unlabeled pAp, GpG or GMP (100 μM). (B) Fraction bound of ³²P-pGpG to 200 nM Orn in presence of no competitor, 100 μM pGpG or 100 μM GpG. (C) Fraction bound of ³²P-pAp to different concentration of Orn_{vc} was determined by DRaCALA. K_d could not be measured as ³²P-pAp binding to Orn was not saturated. (B) (C) All data shown represent duplicate independent experiments.

Figure 5. Orn acts as a diribonucleotidase in cell lysates. Degradation of ³²P-GG (A) and ³²P-AAAAAGG (B) by whole cell lysates of wild-type, orn mutant, orn mutant complemented with orn_{vc}, or orn_{vc} D¹²A. For ∆orn and ∆orn complemented with orn_{vc} D¹²A, 100 nM of purified Orn_{vc} was added at 30 minute time point and incubated for an additional 10 minutes. Samples were stopped at the indicated time and analyzed by 20% denaturing PAGE. Representative gel images of triplicated assays are shown with the indicated RNA size. Graphs show quantitation of triplicate data for indicated RNA species over time.

Figure 5 - figure supplement 1. Catalytic residues of Orn_{vc} are required for degradation for ³²P-AAAAAGG in whole-cell lysates. Degradation of ³²P-AAAAAGG by whole-cell lysates of the indicated strain (PA14, ∆orn mutant complemented with pMMB-orn_{vc} L¹⁸A or pMMB-orn_{vc} H¹⁵⁸A. For ∆orn expressing orn_{vc} L¹⁸A or orn_{vc} H¹⁵⁸A, 100 nM of purified, wild-type Orn_{vc} protein was added at the 30-minute time point and reactions were stopped 10 minutes thereafter. Samples were stopped at indicated time and analyzed by denaturing 20% PAGE. Representative gel images of two independent experiments are shown.
Figure 6. Small-colony phenotype of Δorn is independent of c-di-GMP signaling. Bacterial cultures were diluted and dripped on LB agar plates with the indicated concentration of IPTG. After overnight incubation, representative images of the plates were taken of the plates are shown for (A) PA14 and PA14 ΔpelA harboring pMMB vector with the indicated diguanylate cyclase gene and (B) PA14 Δorn and PA14 Δorn ΔpelA-G with pMMB and pMMB-orn. Experiments were performed in triplicate.

Figure 6 – figure supplement 1. Small-colony phenotype of Δorn is complemented by functional ornVc alleles. Bacterial cultures were diluted, 10 µL was spotted on LB agar plates with the indicated concentration of IPTG and drip to form parallel lines of bacteria. After overnight incubation, representative images of the plates were taken of PA14 Δorn and PA14 Δorn ΔpelA-G with pMMB alone or containing the indicated allele of ornVc. Experiments were performed in triplicate and one representative image of the plates is shown.

Figure 6 – figure supplement 2. P. aeruginosa PAK Δorn mutants show a small-colony phenotype. Indicated bacterial strains were diluted and dripped on (A) LB agar plates or (B) LB agar plates containing 50 µg/mL carbenicillin with indicated concentration of IPTG and incubated overnight at 37 °C. All experiments were performed in triplicate and one representative image of the plates is shown.

Figure 7. Model for Orn’s cellular function as a diribonucleotidase. RNA degradation is initiated by fragmentation via endoribonucleases (e.g. RNase E and RNase III) that cleave unstructured or structured RNA sequences. RNA fragments are processed further at their 3’ termini by 3’-5’ exoribonucleases (e.g. PNPase, RNase R, and RNase II). Their combined activity produces mononucleotides and various terminal diribonucleotides from the original RNA fragments. The pGpG (GG) linear diribonucleotide is also produced by linearization of c-di-GMP by specific phosphodiesterases, EAL- and HD-GYP-domain-containing enzymes, which terminate c-di-GMP signaling. In Pseudomonas aeruginosa and likely other organisms that rely on Orn for growth, Orn is the only diribonucleotidase that cleaves diribonucleotides to mononucleotides. In the absence of Orn, diribonucleotides accumulate with a drastic impact on cellular physiology, ranging from transcriptional changes, small-colony phenotypes and growth arrest, depending on the organism. Orn is also unique because it acts as the second phosphodiesterase in the degradation of c-di-GMP by clearing the pGpG intermediate. In an orn mutant, c-di-GMP levels are elevated through feedback inhibition of the c-di-GMP-degrading phosphodiesterases by pGpG, leading to the associated biofilm phenotypes.
REFERENCES

HA-tagged protein
A

*PrPr
*pr
*PrY
*pr
*PyR
*py
*PyY
*py

B

Fraction Dinucleotide Cleaved

All (0 mins)

pGpG
pApG
pGpA
pApA
pGaU
pApU
pGpC
pApC
pUpG
pUpA
pCcG
pCcA
pCpG
pCpA
pUpC
pUpC
pCpC
pCpC
<table>
<thead>
<tr>
<th></th>
<th>No IPTG</th>
<th>1mM IPTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA14 vector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA14 PA1107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA14 PA1120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA14 PA3702</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA14 ΔpelA vector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA14 ΔpelA PA1107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA14 ΔpelA PA1120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA14 ΔpelA PA3702</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>No IPTG</th>
<th>100μM IPTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC0341 Δorn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC0341 Δorn ΔpelA-G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC0341 Δorn ΔpelA-G</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>