SOCIAL PSYCHOLOGY

A mathematical look at empathy

When an individual makes a judgement about the actions of another individual, taking the latter’s viewpoint into consideration enhances cooperation in society at large.

NAOKI MASUDA AND FRANCISCO C SANTOS

The pros and cons of public and private transport are well known: public transport is more friendly to the environment and to society at large, but it can be inconvenient to the individual; cars and other forms of private transport, on the other hand, are convenient for individuals but are more harmful to the environment. The debate about public versus private transport is an example of a social dilemma that has fascinated psychologists, economists, mathematical biologists and many others for decades. In particular, how and why do humans (and other animals) cooperate and act in ways that put the interests of society at large ahead of their own interests and convenience?

Several mechanisms have been identified over the years to explain how cooperation is maintained when people are confronted with such social dilemmas (Sigmund, 2010). One explanation is that cooperation relies on a mechanism called ‘indirect reciprocity’ that is based on reputation: my decision to cooperate with you depends on your reputation. To illustrate this, consider the following example: Alice has to decide whether or not to help Bob. By helping Bob, Alice may improve her own reputation, and thus increase her chances of being helped by someone else in the future. Alternatively, if she decides not to help Bob, her reputation will be damaged, lowering her chances of being helped in the future.

Although the concept of reputation-based cooperation may sound intuitive, it is in fact more complex than it seems. First, we need to define what is meant by ‘good’ and ‘bad’. For example, if Alice chooses to help Bob, but Bob is perceived to be a ‘bad’ person, should this result in a ‘good’ reputation? And if she decides not to help Bob (Figure 1), should this be seen as ‘bad’? One can continue this line of thought and find the moral codes that allow cooperation to thrive, and show that few rules for assigning reputation are simple enough to appeal to intuition while also being able to promote cooperation (Ohtsuki and Iwasa, 2004; Ohtsuki and Iwasa, 2006; Santos et al., 2018).

Second, the efficiency of these rules will depend on the information that is available to different people. Earlier mathematical models assumed that reputations are public, being instantly shared across society, but this is unlikely unless there is a central institution managing this information. It is more likely that different people will be able to have different opinions about reputations, making it more difficult to maintain cooperation (Uchida, 2010; Okada et al., 2017; Hilbe et al., 2018). Now, in eLife, Arunas Radzvilavicius and Joshua Plotkin of University of Pennsylvania, working with Alexander Stewart of University of Houston, report...
the results of mathematical modelling that offer new insights into the effect of empathy on cooperation when there is no consensus about reputations (Radzvilavicius et al., 2019).

In this context, empathy is the ability of someone to change their opinion of a person based on what other people think of that person (Radzvilavicius et al., 2019). Let us return to the example of Alice and Bob (Figure 1): Alice has chosen not to cooperate with Bob because she believes Bob is bad. In the absence of empathy \((E=0; \text{left})\), Chloe’s opinion of Alice is based solely on the Chloe’s existing opinion of Bob; that is, Chloe thinks Alice is bad because she thinks Bob is good. However, when Chloe has complete empathy for Alice \((E=1; \text{right})\), Chloe’s opinion of Bob is based on Alice’s opinion of Bob: that is, Chloe accepts Bob is bad because Alice thinks he is bad. Radzvilavicius et al. have explored the effect of empathy on cooperation when there is no consensus about reputations.
DOIs:
- https://doi.org/10.1016/j.jtbi.2004.06.005, PMID: 15363933
- https://doi.org/10.1016/j.jtbi.2005.08.008, PMID: 16174521
- https://doi.org/10.1038/s41598-017-09935-2, PMID: 28852005
- https://doi.org/10.7554/eLife.44269, PMID: 30964002
- https://doi.org/10.1038/nature25763, PMID: 29516999
- https://doi.org/10.1103/PhysRevE.82.036111, PMID: 21230143

