Expression of a single inhibitory Ly49 receptor is sufficient to license NK cells for effector functions

  1. Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
  2. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
  3. Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
  4. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
  5. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Neeha Zaidi
    Johns Hopkins University, Baltimore, United States of America
  • Senior Editor
    Tadatsugu Taniguchi
    University of Tokyo, Tokyo, Japan

Reviewer #1 (Public review):

Summary:

The article by Piersma et al. aims to reduce the complex process of NK cell licensing to the action of a single inhibitory receptor for MHC class I. This is achieved using a mouse strain lacking all of the Ly49 receptors expressed by NK cells and inserting the Ly49a gene into the Ncr1 locus, leading to expression on the majority of NK cells.

Strengths:

The mouse model used represents a precise deletion of all NK-expressed genes within the Ly49 cluster. The re-introduction of the Ly49a gene into the Ncr1 locus allows expression by most NK cells. Convincing effects of Ly49a expression on in vitro activation and in vivo killing assay are shown.

Weaknesses:

The choice of Ly49a provides a clear picture of H-2Dd recognition by this Ly49. It would be valuable to perform additional studies investigating Ly49c and Ly49i receptors for H-2b. This is of interest because there are reports indicating that Ly49c may not be a functional receptor in B6 mice due to strong cis interactions.

This work generates an excellent mouse model for the study of NK cell licensing by inhibitory Ly49s that will be useful for the community. It provides a platform whereby the functional activity of a single Ly49 can be assessed.

Reviewer #2 (Public review):

Piersma et al. continue to work on deciphering the role and function of Ly49 NK cell receptors. This manuscript shows that a single inhibitory Ly49 receptor is sufficient to license NK cells and eliminate MHC-I-deficient target cells in mice. In short, they refined the mouse model ∆Ly49-1 (Parikh et al., 2020) into the Ly49KO model in which all Ly49 genes are disrupted. Using this model, they confirmed that NK cells from Ly49KO mice cannot be licensed, produce lower levels of IFN-gamma, and cannot reject MHC-I-deficient cells. To study the effect of a single Ly49 receptor in the function of NK cells, the authors backcrossed Ly49KO mice to H-2Dd transgenic KODO (D8-KODO) Ly49A knock-in mice in which a single inhibitory Ly49A receptor that recognizes H-2Dd ligands is expressed. By doing so, they demonstrate that a single inhibitory Ly49 receptor expressed by all NK cells is sufficient for licensing and missing-self killing.

While the results of the study are largely consistent with the conclusions, it is important to address some discrepancies. For instance, in the title of Figure 1, the authors state that NK cells in Ly49KO mice compared to WT mice have a less mature phenotype , which is not consistent with the corresponding text in the Results section (lines 170-171) that states there is no difference in maturation. These differences are not evident in Figure 1, panel D. It is crucial to acknowledge these inconsistencies to ensure a comprehensive understanding of the research findings.

In the legend of Figure 2. the text related to panel C indicates the use of dyes to label the splenocytes, and CFSE, CTV, and CTFR were mentioned. However, only CTV and CTFR are shown on the plots and mentioned in the corresponding text in the Results section. Similarly, in the legend of Figure 4, which is related to panel C, the authors write that splenocytes were differentially labeled with CFSE and CTV as indicated; however, in Figure 4, C and the Results section text, there is no mention of CFSE.

The authors should clarify why they assume that KLRG1 expression is influenced by the expression of inhibitory Ly49 receptors and not by manipulations on chromosome 6, where the genes for both KLRG1 and Ly49 receptors are located. However, a better explanation for the possible influence of other inhibitory NK cell receptors still needs to be included. In the study by Zhang et al. (doi: 10.1038/s41467-019-13032-5 the authors showed the synergized regulation of NK cell education by the NKG2A receptor and the specific Ly49 family members. Although in this study, Piersma and colleagues show the control of MHC-I deficient cells by Ly49A+ NKG2A-NK cells in Figure 4., this receptor is not mentioned in the Results or in the Discussion section, so its role in this story needs to be clarified. Therefore, the reader would benefit from more information regarding NKG2A receptor and NKG2A+/- populations in their results.

Reviewer #3 (Public review):

Summary:

In this study, Piersma et al. successfully generated a mouse model with all Ly49 genes knocked out, resulting in the complete absence of Ly49 receptor expression on the cell surface. The absence of Ly49 expression led to the loss of NK cell education/licensing and consequently, a failure in responsiveness against missing-self target cells. The experimental work and findings are partially overlapping with the previous work by Zhang et al. (2019), who also performed knockout of the entire Ly49 locus in mice and demonstrated that loss of NK responsiveness was due to the removal of inhibitory, and not activating Ly49 genes. The authors demonstrate the restoration of NK cell licensing by knocking in a single Ly49 gene, Ly49A, in a mouse expressing the H-2Dd ligand for this receptor, which is a novel and important finding.

Strengths:

The authors established a novel mouse model enabling them to have a clean and thorough study on the function of Ly49 on NK cell licensing. Also, by knocking in a single Ly49, they were able to investigate the function of a given Ly49 receptor excluding the "contamination" of co-expression of any other Ly49 genes. Their idea and method were novel though the mouse model was somehow genetically similar to a previous study. The experiment design and data interpretation were logically clear and the evidence was solid.

Weaknesses:

The paper is very poorly written and confusing. The authors should be more accurate in the usage of terminology, provide more details on experimental procedures, and revise much of the text to improve clarity and coherence. A thorough revision aiming to clarify the paper would be helpful.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation