Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorTeresa GiraldezUniversity of La Laguna, La Laguna, Spain
- Senior EditorMerritt MadukeStanford University, Stanford, United States of America
Joint Public Review:
This study presents a valuable contribution to our understanding of ion channel complex assembly by investigating whether BK and CaV1.3 channels begin to form functional associations early in the biosynthetic pathway, prior to reaching the plasma membrane. Using a combination of proximity ligation assays, single-molecule RNA imaging, and super-resolution microscopy, the authors provide convincing evidence that these channels co-localize intracellularly within the ER and Golgi, in both overexpression systems and a relevant endogenous cell model. The study addresses an important and underexplored aspect of membrane protein trafficking and organization, with broader implications for how ion channel signaling complexes are assembled and regulated. The experimental approaches are generally appropriate and the imaging data are clearly presented, with a commendable number of control experiments included. However, several limitations temper the interpretation of the results. The mechanisms underlying mRNA co-localization, and the role of co-translation in complex formation, remain insufficiently defined. Similarly, while intracellular colocalization is convincingly demonstrated, the study does not establish whether such early assembly is the predominant pathway for generating functional complexes at the plasma membrane. More rigorous quantification of channel co-association across compartments, and clarification of key terminology and image analysis methods, would strengthen the overall conclusions. Some of the language in the manuscript would also benefit from a more measured tone to avoid overstating the novelty of the findings. Despite these limitations, the study offers meaningful insights into intracellular ion channel organization and will be of interest to researchers in cell biology, membrane trafficking, and neurophysiology. With focused revisions addressing the outlined points, the manuscript has the potential to make a solid contribution to the field.