Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDouglas PortmanUniversity of Rochester, Rochester, United States of America
- Senior EditorSonia SenTata Institute for Genetics and Society, Bangalore, India
Reviewer #1 (Public review):
Summary:
This paper describes an interesting phenotype of C. elegans lite-1 mutants. Previous work showed that lite-1 mutants lose a violet/blue light avoidance response. The authors show here that lite-1 mutants also show a defect in negative diacetyl chemotaxis. While wild-type worms avoid diacetyl at high concentrations, lite-1 mutants are instead *attracted* to it. The authors go on to perform Ca2+ imaging in sensory neurons and find that ADL and ASK neurons show altered Ca2+ responses to diacetyl in lite-1 mutants, suggesting LITE-1 is required for these responses. As unc-13 mutants with defective synaptic transmission show similar diacetyl Ca2+ responses as wild-type, this suggests these neurons respond cell autonomously to diacetyl. However, whether lite-1 also acts cell-autonomously is not discussed. Indeed, because unc-13 and lite-1 mutants show different ADL and ASK Ca2+ responses, it seems the diacetyl response regulated by LITE-1 is likely acting outside of those cells. An interesting result that is not commented on is the switching of the valence of the ASK Ca2+ response in lite-1 mutants. ASK neurons still respond to diacetyl, but instead of a strong increase in Ca2+, diacetyl appears to drive it strongly lower. This may be consistent with the switch in valence in the diacetyl chemotaxis assay. It also argues against the idea that LITE-1 is a low-affinity diacetyl receptor that drives avoidance or the Ca2+ responses in ASK, since it is still present in lite-1 mutants. The authors then use a strain that expresses LITE-1 in the body wall muscles and show this expression is sufficient to engender them with sensitivity to diacetyl, as measured through altered swimming and hypercontractility. The authors interpret this result as LITE-1 may act as a diacetyl receptor. The authors test whether a structurally similar molecule, 2,3-pentanedione, shows similar effects, and they find it does. Alpha-fold modeling and molecular docking analysis show where diacetyl might bind to the LITE-1 protein. They then test whether lite-1 mutants show chemotaxis defects to other molecules, as seen with diacetyl. Generally, they find that the observed diacetyl responses are unique, although lite-1 mutants do lose their avoidance response to 2,3-pentanedione. However, unlike the acquisition of diacetyl attraction in lite-1 mutants, 2,3 pentanedione avoidance is *lost*; it is not switched to attraction. Overall, I felt the description of the results and their implications could have been more in-depth. Further, the evidence that LITE-1 is a chemoreceptor itself, rather than acting in some way to shape chemoreceptor responses (via light or otherwise), remains unclear, as conceded by the authors.
Strengths:
Overall, the study follows up on an interesting and useful result. The experiments as presented are generally well-conceived and performed. The authors use a variety of behavioral and imaging approaches to test how LITE-1 mediates diacetyl avoidance.
Weaknesses:
The study is missing experiments needed to resolve whether LITE-1 is doing what they propose. The evidence that LITE-1 is a diacetyl receptor is lacking support since lite-1 mutants have their avoidance and calcium responses flipped, which would not be expected if it were acting solely as an avoidance receptor. Presumably, the authors are concluding that the attractive response that is left in the lite-1 mutant is mediated by ODR-10, but that experiment is not shown. Similarly, the authors concede that "the use of lite-1 point mutants that affect specific LITE-1 function, such as light sensing, channel gating, or binding pocket, could further elucidate LITE-1 mechanisms." This reviewer agrees, and such experiments designed to localize diacetyl binding site(s) would be necessary to conclude definitively that LITE-1 is a diacetyl receptor. The body wall muscle assay used or some other heterologous experimental system could work for such a structure-function analysis. A concern is whether the extensive number of LITE-1 point mutants described in the literature affect cell surface expression vs. receptor function, which might complicate the interpretation of a result showing loss of diacetyl responses.
Reviewer #2 (Public review):
Summary:
Koh and colleagues investigate the broader sensory role of LITE-1, a gustatory receptor previously linked to UV light detection in C. elegans. Their study explores whether LITE-1 also mediates avoidance of specific chemical stimuli-namely, high concentrations of diacetyl and 2,3-pentanedione. They show that LITE-1 is required in the ADL and ASK neurons for calcium responses to diacetyl, and that its expression in body-wall muscles is sufficient to trigger hypercontraction upon odorant exposure. Molecular docking suggests both odorants may directly bind to LITE-1 with micromolar affinity. These findings suggest LITE-1 may act as a multimodal receptor for both light and chemical stimuli.
Strengths:
(1) Methodological Precision: The study is technically strong, with well-executed calcium imaging and quantitative behavioral assays that clearly show neural and muscular responses to chemical stimuli.
(2) Novelty and Scope: The work presents a compelling case for LITE-1 functioning as a multimodal sensor, which is an intriguing expansion of its known role.
(3) Potential Impact: If validated, the findings could significantly advance the understanding of sensory integration in C. elegans, and the tools developed may be broadly useful to the research community.
(4) Relevance to the Field: The study adds to evidence that C. elegans uses non-canonical sensory pathways and may inspire further exploration of multimodal receptor functions in other systems.
Weaknesses:
(1) Lack of Rescue Experiments: The absence of rescue experiments makes it difficult to definitively link the observed phenotypes to loss of lite-1.
(2) Single Loss-of-Function Approach: The reliance on a single genetic mutant limits interpretability. Additional strategies such as RNAi (e.g., neuron-specific knockdown) would provide stronger evidence.
(3) Unclear Neuronal Contribution: While calcium responses in ADL and ASK are reduced, it's unclear which neuron(s) are necessary for behavioral avoidance. Cell-specific rescue or knockdown experiments are needed.
(4) Unvalidated Docking Data: The molecular docking predictions lack experimental validation. Site-directed mutagenesis would be needed to support claims of direct interaction.
(5) Limited Odorant Specificity Testing: Docking analysis does not include non-binding odorants, making it difficult to assess binding specificity.
(6) Incomplete Quantification: Some calcium imaging results (e.g., in AWA neurons of unc-13 mutants) lack statistical comparisons, which limits their interpretive value.
Reviewer #3 (Public review):
In this work, Brown and colleagues report that the photosensor protein LITE-1 of the nematode C. elegans may also be a chemosensor that can be activated by high concentrations of the compound diacetyl. LITE-1 was described as a putative ion channel of the gustatory receptor family, which is mainly constituted by insect odorant receptors. These form tetrameric ion channels that can be activated by odorants. Specificity is achieved by forming heteromeric channels from three copies of the odorant receptor co-receptor (ORCO) and another subunit that resembles ORCO in the pore-forming C-terminus, but brings in a binding site for the respective odorant. LITE-1 has a very similar structure, according to Alphafold3 predictions, and also carries a binding pocket. In LITE-1, this was proposed to be occupied by a light-absorbing molecule that activates the channel when a photon is absorbed. Alternatively, compounds generated by absorption of high-energy photons may be formed in vivo and bound by the LITE-1 binding pocket. Koh et al. now demonstrate that another, non-light-activated compound, diacetyl, at high concentrations, can activate cells expressing LITE-1. Such (chemosensory) cells are also responsible for the avoidance of high concentrations of diacetyl. LITE-1 activation in excitable cells, i.e, muscles, causes strong body contraction and paralysis, and the authors show that this is also the case when diacetyl is presented. The authors further present molecular docking studies showing that diacetyl could occupy the binding pocket of LITE-1. Last, they show that another compound chemically resembling diacetyl, i.e., 2,3-pentanedione, can also induce avoidance in a LITE-1 dependent manner, though not as potently.
The data are intriguing, and the demonstration of LITE-1 being a diacetyl chemosensor is interesting. Yet, there are a few questions arising that the authors should address.
The authors identified mutants lacking diacetyl responses. In their chemotaxis assay (Figures 1A, B), they show that lite-1 mutants do not avoid high concentrations of diacetyl. However, the animals actually showed attraction, as the chemotaxis index was positive. If the lite-1 animals were insensitive, they should be indifferent, and the chemotaxis index should be close to zero. This means, other neurons contribute to the diacetyl response, and the result of these neurons being activated means/remains attraction? If so, the authors need to rule out any effects of these neurons on the effects they attribute to LITE-1 in the other assays.
The effect of diacetyl on muscle cells (Figure 3C) is pretty rapid, i.e., already during 1 minute after application, the animals are almost maximally contracted. How fast is it really? Can the authors provide a time course with more time points during the first minute? This is a relevant question, as the compound would have to either pass the worm cuticle or enter through the gut and diffuse through the body to reach the muscle cells. Can one expect this to occur within (less than) a minute?
In this context, the authors need to rule out that other mechanisms may be at play. E.g., diacetyl may be immediately sensed by ciliated chemosensory neurons that might release a signaling molecule that leads to activation of LITE-1 in muscles, or that sensitizes it somehow, responding to light used for filming animals. The authors should repeat this assay in a lite-1 mutant background. Furthermore, the authors tested unc-13 mutants to rule out indirect effects on the neurons recorded. Likewise, they should eliminate neuropeptide signaling via unc-31 mutants (a recent paper cited by the authors showed involvement of neuropeptide signaling in LITE-1-mediated light avoidance behavior). Last, to demonstrate that effects are not indirect in response to chemosensory neurons, the authors should repeat the contraction or swimming assay in a tax-4 mutant, which largely lacks chemosensation. This also applies to the chemotaxis assay. Animals should exhibit a chemotaxis index to diacetyl of zero, then.
Does diacetyl activate other neurons expressing LITE-1? A number of cells express LITE-1 at high levels, which the authors have not tested (they restricted their analyses to chemosensory neurons). This is important to address because it leaves the possibility that LITE-1 requires a specific partner only present in these chemosensory neurons to detect diacetyl. This partner would have to be present also in muscles, where diacetyl could activate ectopically expressed LITE-1. According to CeNGEN scRNAseq data, cells expressing LITE-1 can be identified. The ADL and ASH neurons actually come up only at the lowest threshold, so some of the other cells showing much higher levels of LITE-1 mRNAs, i.e., AVG, ALM, PLM, ASG, PHA, PHB, AVM, RIF, or some pharyngeal neurons, should be tested. ASG was among the cells the authors recorded from, but this neuron did not show a response.
The authors need to show that diacetyl responses of ADL and/or ASK can be rescued by expressing LITE-1 specifically in these neurons in a lite-1 mutant background.
Molecular docking studies are not described in detail. How was this done? Diacetyl is a very small molecule. How well can docking algorithms assess this at all? Did the authors preselect the binding pocket, or did the algorithm sample the entire molecular surface of the LITE-1 model and end up with the binding pocket? The latter would be very convincing. The authors should provide control docking experiments with other molecules that caused avoidance in their hands (i.e. benzaldehyde, 2,4,5,trimethlythiazole, isoamyl alcohol, nonanone, octanone), but did not activate LITE-1. Also, they should try docking molecules related to diacetyl, and if there are some that do not dock under the same conditions, such molecules should be used in a behavioral experiment. Ideally, they should also not activate LITE-1. Examples could be, e.g., diacetyl monoxime or 2,4-pentanedione.
Last, the authors should provide a PDB file with the docked diacetyl to allow readers to assess the binding for themselves. Since a large number of mutations of LITE-1 have been reported, it may be that amino acids shown to be essential for LITE-1 function are also required for diacetyl binding. If so, this could be backed up with an experiment.