Goal-directed visual information processing with GABAergic inhibition in parietal cortex

  1. Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Qing Yu
    Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
  • Senior Editor
    Timothy Behrens
    University of Oxford, Oxford, United Kingdom

Reviewer #1 (Public review):

Summary

Wang et al. address the challenge of tracking goal-relevant visual signals amidst distractions, a fundamental aspect of adaptive visual information processing. By employing functional magnetic resonance spectroscopy (fMRS) during a visual tracking task, they quantify changes in both inhibitory (GABA) and excitatory (glutamate) neurotransmitter concentrations in the parietal and visual cortices. The results reveal that increases in GABA and glutamate in the parietal cortex are closely tied to the number of targets, and individual differences in GABAergic and glutamatergic responses within the parietal cortex predict tracking performance and distractor suppression. These findings underscore a neural mechanism in which GABAergic inhibition in the parietal cortex actively suppresses goal-irrelevant distractors, thereby facilitating goal-directed visual tracking and highlighting the dynamic role of these key metabolites in cognitive control during visual processing. I found the study to be well-written and thoughtful from an experimental standpoint, although it would benefit from some targeted revisions.

Strengths

(1) The study employs robust and validated fMRS methodology, allowing for real-time monitoring of metabolite changes during goal-directed tasks.

(2) Simultaneous measurement of both GABA and Glx in parietal and visual cortices yields nuanced insights into the neurochemical correlates of visual attention.

(3) The link between neurochemical changes and behavioral performance is clearly established, providing strong evidence for GABAergic involvement in distractor suppression.

(4) Experimental protocols align with current standards for MEGA-PRESS, bolstering the technical reliability of the findings.

Weaknesses

(1) Certain aspects of terminology, methodological reporting, and confound management are inconsistently described throughout the manuscript.

(2) Important confounding factors are not systematically reported or controlled.

(3) Opportunities for additional analysis (e.g., behavioral dynamics, use of alternate fitting methods, more comprehensive quality metrics) have not been fully explored.

(4) Open access data and/or codes for the analysis are not shared in the main manuscript

Reviewer #2 (Public review):

Summary:

This study investigates how the visual system is able to track target objects when these are presented in the visual field together with other irrelevant and distracting visual objects. The authors use functional Magnetic Resonance Spectroscopy to measure the two most important excitatory and inhibitory neurotransmitters, glutamate and GABA, in both the visual and parietal cortex.

Strengths:

(1) Well-designed functional challenge.

(2) Number of subjects.

(3) Good quality spectra and appropriate reporting of MRS methods and quality assurance.

(4) Introduction and discussion are clear for non-experts in visual processing.

Weaknesses:

(1) Rejection of spectra based on high % CRLB may artificially remove data with the lowest metabolite concentration.

(2) SN description as percentage does not make sense.

Reviewer #3 (Public review):

Wang et al. report multiple experiments using functional magnetic resonance spectroscopy (fMRS) in a multiple object tracking (MOT) task to investigate the effect of experimentally manipulating a) the number of targets, b) object size, and c) total number of objects in the display on GABA and glutamate (Glx) concentrations in parietal and visual cortex. Data is analyzed in two orthogonal ways throughout: via condition differences in behavorial performance (inverse efficiency), GABA, and Glx concentrations and through correlations between changes in inverse efficiency and GABA or Glx. All three experimental manipulations affected inverse efficiency, with worse performance with more targets, smaller objects, and a larger total number of objects. However, only the manipulation of the target number produced a condition difference in GABA and Glx, with higher concentrations of both in the parietal VOI and only of Glx in the visual VOI with more targets ('high load'). Correlational analyses revealed that participants with a larger change in GABA in the parietal VOI with a higher number of targets showed a smaller drop in behavioral performance with more targets. The opposite direction of correlation was observed for Glx in both the visual and parietal VOI.

In the two control experiments, correlations were only investigated in the parietal VOI. There was a negative correlation between change in Glx and change in inverse efficiency with manipulation of object size, i.e. participants exhibiting a positive change in Glx showed no or little difference in performance, but those with an increase in Glx with smaller targets showed a more pronounced drop in performance. There was no correlation with GABA for the manipulation of object size. For the manipulation of total object number, participants exhibiting an increasing GABA concentration with more objects showed a smaller drop in performance.

The authors' main claim is that GABAergic suppression of goal-irrelevant distractors in parietal cortex is key to goal-directed visual information processing.

The study is, to my knowledge, the first to employ fMRS in an MOT paradigm, and I read it with great interest. I am admittedly not an expert on the fMRS technique and have therefore refrained from commenting on the technical aspects of its use. Although the application of fMRS to MOT is novel and adds new knowledge to the field, I have some critiques and believe that a much more nuanced interpretation of the findings is warranted.

Major

(1) Especially the control experiments lean heavily on Bettencourt and Somers (2009) and adopt and to some extent exaggerate claims from that paper uncritically. This is obvious in referring to the manipulations of object size and object number as high/low enhancement and high/low suppression, as if the association of these physical manipulations of the stimulus display with attentional mechanisms were so obvious and beyond doubt that drawing any distinction between these manipulations and their supposed effects is entirely superfluous. This seems far beyond what is warranted to me. It may seem plausible that adding distractors engages distractor suppression more, but whether this is truly the case is an empirical question, and Bettencourt and Somers (2009) have no direct measure of distractor suppression to substantiate this claim. Their study is purely behavioral, and there is no attempt to assess distractor processing separately. The case for the 'target enhancement' manipulation is even weaker: objects are of a sufficient size and at maximum contrast (white on black screen, but exact details are omitted) to be clearly visible in either condition, so why would smaller objects require more enhancement? Although the present data shows a clear effect of manipulating object size, the corresponding size of the effect in Bettencourt and Somers (2009) is rather underwhelming and does not warrant such a strong conclusion. In summary, the link between the object number and object size manipulations with suppression and enhancement is very far from the 1:1 that the authors seem to assume. Accordingly, I believe that the manipulations should be labelled as object number and object size rather than their hypothesized effects, throughout and that there should be a much more critical discussion as to whether these manipulations are indeed related to these effects as expected.

(2) The author's interpretation of the results seems rather uncritical. What is observed (at least in the first experiment) is a change in GABA and Glx concentrations with changes in the number of tracked targets. Is the only conceivable way in which this could happen through target enhancement and distractor suppression? The processing of targets and distractors is not measured directly, so any claims are indirect, at best. The authors cite the recent 'Ten simple rules to study distractor suppression' paper (Wöstmann et al., 2022), which presents a consensus between leading researchers in the field. Neither Bettencourt & Somers (2009) nor the design of the current study live up to the rules established in that paper, so a much more nuanced interpretation and discussion of the current findings seems warranted. It is anything but obvious to me that the only activity in the parietal cortex that could possibly be suppressed by GABA is the representation of distractors. Indeed, cueing more targets (high load) decreases the number of distractors in the first experiment, so the need for distractor suppression in the high load condition is less than in the low load condition. So, shouldn't we observe lower GABA concentrations in the 'high load' condition?

(3) It seems that the authors included data from both correctly tracked and incorrectly tracked trials in their fMRS analysis. In MOT, attending target objects is the task per se, so task errors indicate that participants did not actually track the targets. So when comparing conditions with different error levels, it is ambiguous whether changes in brain activity reflect the experimental manipulation as such, or rather the different mix of correctly tracked and incorrectly tracked trials that result from this physical manipulation. Are the correlations perhaps driven by the inclusion of different proportions of correctly tracked trials across participants? It seems that the authors may have to separate correct and error trials in the analysis to check for the possibility that effects are due to the inclusion of data from trials in which participants may have stopped tracking at least some of the target objects. Of course, such an analysis is somewhat limited by the fact that only one target was probed, yielding a 50% guessing chance (i.e. even if the response is correct, we do not know whether the other, unprobed, objects were tracked correctly on that trial).

(4) The key findings from the control experiments are purely correlational. The supposed cause may be what the authors claim, but there is an infinity of alternative explanations. Correlational findings cannot simply be interpreted as if they resulted from an experimental manipulation (...although this is, unfortunately, by no means rare in the cognitive neuroscience literature). The authors should make a rigorous effort to consider the most plausible alternative explanations for these correlations and argue why or why not they believe that they can be discounted.

(5) Related to the previous point: the experimental manipulations did not produce mean differences in GABA/Glx in the control experiments. Doesn't this speak against the authors' interpretation? They briefly acknowledge this in the discussion, but I think there is a deeper problem. The absence of these effects casts doubt on what these manipulations actually do, and therefore also on the interpretation of the correlations in these experiments. For example, the authors might also have concluded from the same data that the absence of increased GABA in the 'high suppression' condition refutes the very idea that GABA concentrations are related to distractor suppression.

(6) 'Inverse Efficiency' is a highly unusual measure of MOT performance in the literature, and its use reduces the comparability of the findings with previous work. The standard is to assess the correctness ('accuracy') of responses with no focus on speed. This makes sense as responses are given after the object motion has stopped. At the same time, reaction time can be informative too (e.g., Störmer et al., 2013). I think the authors should justify their use of inverse efficiency as the dependent variable.

(7) The choice of variable names is problematic: it is sometimes misleading and makes understanding the findings harder (see also points 1 and 6): obvious, unambiguous, and importantly, interpretation free names for conditions such as target number (2/4), object size (small/large), and total object number (8/12) become load (high/low), target enhancement (high/low) and distractor suppression (low/high). This reduces clarity and, especially in the case of enhancement and suppression, conflates the actual manipulation with its interpretation.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation