Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorLejla ZubcevicUniversity of Kansas Medical Center, Kansas City, United States of America
- Senior EditorMerritt MadukeStanford University, Stanford, United States of America
Reviewer #1 (Public review):
Summary:
This manuscript investigates the biological mechanism underlying the assembly and transport of the AcrAB-TolC efflux pump complex. By combining endogenous protein purification with cryo-EM analysis, the authors show that the AcrB trimer adopts three distinct conformations simultaneously and identify a previously uncharacterized lipoprotein, YbjP, as a potential additional component of the complex. The work aims to advance our understanding of the AcrAB-TolC efflux system in near-native conditions and may have broader implications for elucidating its physiological mechanism.
Strengths:
Overall, the manuscript is clearly presented, and several of the datasets are of high quality. The use of natively isolated complexes is a major strength, as it minimizes artifacts associated with reconstituted systems and enables the discovery of a novel subunit. The authors also distinguish two major assemblies-the TolC-YbjP sub-complex and the complete pump-which appear to correspond to the closed and open channel states, respectively. The conceptual advance is potentially meaningful, and the findings could be of broad interest to the field.
Weaknesses:
(1) As the identification of YbjP is a key contribution of this work, a deeper comparison with functional "anchor" proteins in other efflux pumps is needed. Including an additional supplementary figure illustrating these structural comparisons would be valuable.
(2) The observation of the LTO states in the presence of TolC represents an important extension of previous findings. A more detailed discussion comparing these LTO states to those reported in earlier structural and biochemical studies would improve the clarity and significance of this point.
Reviewer #2 (Public review):
Summary:
This manuscript reports the high-resolution cryo-EM structures of the endogenous TolC-YbjP-AcrABZ complex and a TolC-YbjP subcomplex from E. coli, identifying a novel accessory subunit. This work is an impressive effort that provides valuable structural insights into this native complex.
Strengths:
(1) The study successfully determines the structure of the complete, endogenously purified complex, marking a significant achievement.
(2) The identification of a previously unknown accessory subunit is an important finding.
(3) The use of cryo-EM to resolve the complex, including potential post-translational modifications such as N-palmitoyl and S-diacylglycerol, is a notable highlight.
Weaknesses:
(1) Clarity and Interpretation: Several points need clarification. Additionally, the description of the sample preparation method, which is a key strength, is currently misplaced and should be introduced earlier.
(2) Data Presentation: The manuscript would benefit significantly from improved figures.
(3) Supporting Evidence: The inclusion of the protein purification profile as a supplementary figure is essential. Furthermore, a discussion comparing the endogenous AcrB structure to those obtained in other systems (e.g., liposomes) and commenting on observed lipid densities would strengthen the overall analysis.
Reviewer #3 (Public review):
Summary:
The manuscript "Structural mechanisms of pump assembly and drug transport in the AcrAB-TolC efflux system" by Ge et al. describes the identification of a previously uncharacterized lipoprotein, YbjP, as a novel partner of the well-studied Enterobacterial tripartite efflux pump AcrAB-TolC. The authors present cryo-electron microscopy structures of the TolC-YbjP subcomplex and the complete AcrABZ-TolC-YbjP assembly. While the identification and structural characterization of YbjP are potentially novel, the stated focus of the manuscript-mechanisms of pump assembly and drug transport - is not sufficiently addressed. The manuscript requires reframing to emphasize the principal novelty associated with YbjP and significant development of the other aspects, especially the claimed novelty of the AcrB drug-efflux cycle.
Strengths:
The reported association of YbjP with AcrAB-TolC is novel; however, a recent deposition of a preceding and much more detailed manuscript to the BioRxiv server (Horne et al., https://doi.org/10.1101/2025.03.19.644130) removes much of the immediate novelty.
Weaknesses:
While the identification of YbjP is novel, the authors do not appear to acknowledge the precedence of another work (Horne et al., 2025), and it is not cited within the correct context in the manuscript.
Several results presented in the TolC-YbjP section do not represent new findings regarding TolC structure itself. The structure and gating behaviour of TolC should be more thoroughly introduced in the Introduction, including prior work describing channel opening and conformational transitions. The current manuscript does not discuss the mechanistic role of helices H3/H4 and H7/H8 in channel dilation, despite implying that YbjP binding may influence these features. Only the original closed TolC structure is cited, and the manuscript does not address prior mutational studies involving the D396 region, though this residue is specifically highlighted in the presented structures.
The manuscript provides only a general structural alignment between the closed TolC-YbjP subcomplex and the open TolC observed in the full pump assembly. However, multiple open, closed, and intermediate conformations of AcrAB-TolC have already been reported. Thus, YbjP alone cannot be assumed to account for TolC channel gating. A systematic comparison with existing structures is necessary to determine whether YbjP contributes any distinct allosteric modulation.
The analysis of AcrB peristaltic action is superficial, poorly substantiated and importantly, not novel. Several references to the ATP-synthase cycle have been provided, but this has been widely established already some 20 years ago - e.g. https://www.science.org/doi/10.1126/science.1131542.
The most significant limitation of the study is the absence of functional characterization of YbjP in vivo or in vitro. While the structural association between YbjP and TolC is interesting, the biological role of YbjP remains unclear. Moreover, the manuscript does not examine structural differences between the presented complex and previously solved AcrAB-TolC or MexAB-OprM assemblies that might support a mechanistic model.