Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorTirin MooreStanford University, Howard Hughes Medical Institute, Stanford, United States of America
- Senior EditorTirin MooreStanford University, Howard Hughes Medical Institute, Stanford, United States of America
Reviewer #1 (Public review):
This manuscript used deep learning to highlight the role of inhibition in shaping selectivity in primary and higher visual cortex. The findings hint at hitherto unknown axes of structured inhibition operating in cortical networks with a potentially key role in object recognition.
The multi-species approach of testing the model in macaque and mouse is excellent, as it improves the chances that the observed findings are a general property of mammalian visual cortex. However, it would be useful to delineate any notable differences between these species, which are to be expected given their lifestyle.
The overall performance of the model appears to be excellent in V1, with over 80% performance, but it falls substantially in V4. It would be important to consider the implications of this finding; for example, in the context of studying temporal lobe structures that are central to recognizing objects. Would one expect that model performance decreases further here, and what measures could be taken to avoid this? Or is this type of model better restricted to V1 or even LGN?
While the manuscript delineates novel axes of inhibitory interactions, it remains unclear what exactly these axes are and how they arise. What are the steps that need to be taken to make progress along these lines?
Reviewer #2 (Public review):
The classic view of sensory coding states that (excitatory) neurons are active to some preferred stimuli and otherwise silent. In contrast, inhibitory neurons are considered broadly tuned. Due to the gigantic potential image space, it is hard to comprehensively map the tuning of individual neurons. In this tour de force study, Franke et al. combine electrophysiological recordings in macaque (V1, V4) and mouse (V1, LM, LI) visual cortex with large-scale screens based on digital twin models, as well as beautiful systems identification (most/least activating stimuli). Based on these digital twins, they discover dual-feature selectivity (which they validate both in macaques and mice). Dual-feature selectivity involves a bidirectional modulation of firing rates around an elevated baseline. Neurons are excited by specific preferred features and systematically suppressed by distinct, non-preferred features. This tuning was identified by excellently combining advances in AI & high-throughput ephys.
The study is comprehensive and convincing. Overall, this work showcases how in silico experiments can generate concrete hypotheses about neuronal coding that are difficult to discover experimentally, but that can be experimentally validated! I think this work is of substantial interest to the neuroscience community. I'm sure it will motivate many future experimental and computational studies. In particular, it will be of great interest to understand when and how the brain leverages dual-feature selectivity. The discussion of the article is already an interesting starting point for these considerations.
Strengths:
(1) Using computational models to predict neuronal responses allowed them to go through millions of images, which may not be possible in vivo.
(2) The cross-species and cross-area consistency of the results is another major strength. Pointing out that the results may be a fundamental strategy of mammalian cortical processing.
(3) They show that the feature causing peak excitation in one neuron often drives suppression in another. This may be an efficient coding scheme where the population covers the visual manifold. I'd like to understand better why the authors believe that this shows that there are low-dimensional subspaces based on preferred and non-preferred stimulus features (vs. many more, but some axes are stronger).