Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJennifer FleggThe University of Melbourne, Melbourne, Australia
- Senior EditorDominique Soldati-FavreUniversity of Geneva, Geneva, Switzerland
Reviewer #1 (Public Review):
The study as a concept is well designed, although there are two issues I see in the methodology (these may be just needing further explanation or if I am correct in my interpretation of what was done, may need reanalysis to take into account). Both issues relate to the data that was extracted from the published literature on zoonotic malaria prevalence in the study area.
1. No limit was set on the temporal range
With no temporal limit on the range of studies, the landscape in many cases will have changes between the study being conducted and the spatial data. This will be particularly marked in areas where there has been clearing since the zoonotic malaria prevalence study. Also, population changes (either through population growth, decline or movement) will have occurred. All research is limited in what it can do with the available data, so I realise that there may not be much the authors can do to correct this. One possible solution would be to look at the land use change at each site between the prevalence study and the remote sensing data. I'm not sure if this is feasible, but if it is I would recommend the authors attempt this as it will make their results stronger.
2. Most studies only gave a geographic area or descriptive location.
The spatial analysis was based on a 5km and 20km radius of the 'study site' location, but for many of the studies the exact site is not known. Therefore the 'study site' was artificially generated using a polygon centroid. Considering that the polygon could be an administrative boundary (ie district/state/country), this is an extremely large area for which a 5km radius circle in the middle of the polygon is being taken as representative of the 'study site'. This doesn't make sense as it assumes that the landscape is uniform across the district, which in most cases it will not be (in rural areas it is going to be a mixture of villages, forest, plantation, crops etc which will vary across the landscape). This might just be a case of misunderstanding what was done (in which case the text needs rewording to make it clearer) or if I have interpreted it correctly the selection of the centroid to represent the study area does not make sense. I am not sure how to overcome this as it probably not possible to get exact locations for the study sites. One possibility could be to make the remote sensing data the same scale as the prevalence data ie if the study site is only identifiable at the polygon level, then the remote sensing data (fragmentation, cover and population) is used at the polygon level.
Both these issues could have an impact on the study's findings. I would think that in both cases it might make the relationship between the environmental variables and prevalence even clearer.
Reviewer #2 (Public Review):
This is the first comprehensive study aimed at assessing the impact of landscape modification on the prevalence of P. knowlesi malaria in non-human primates in Southeast Asia. This is a very important and timely topic both in terms of developing a better understanding of zoonotic disease spillover and the impact of human modification of landscape on disease prevalence.
This study uses the meta-analysis approach to incorporate the existing data sources into a new and completely independent study that answers novel research questions linked to geospatial data analysis. The challenge, however, is that neither the sampling design of previous studies nor their geospatial accuracy are intended for spatially-explicit assessments of landscape impact. On the one hand, the data collection scheme in existing studies was intentionally opportunistic and does not represent a full range of landscape conditions that would allow for inferring the linkages between landscape parameters and P. knowlesi prevalence in NHP across the region as a whole. On the other hand, the absolute majority of existing studies did not have locational precision in reporting results and thus sweeping assumptions about the landscape representation had to be made for the modeling experiment. Finally, the landscape characterization was oversimplified in this study, making it difficult to extract meaningful relationships between the NHP/human intersection on the landscape and the consequences for P. knowlesi malaria transmission and prevalence.
Despite many study limitations, the authors point to the critical importance of understanding vector dynamics in fragmented forested landscapes as the likely primary driver in enhanced malaria transmission. This is an important conclusion particularly when taken together with the emerging evidence of substantially different mosquito biting behaviors than previously reported across various geographic regions.
Another important component of this study is its recognition and focus on the value of geospatial analysis and the availability of geospatial data for understanding complex human/environment interactions to enable monitoring and forecasting potential for zoonotic disease spillover into human populations. More multi-disciplinary focus on disease modeling is of crucial importance for current and future goals of eliminating existing and preventing novel disease outbreaks.