Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorQiang CuiBoston University, Boston, United States of America
- Senior EditorQiang CuiBoston University, Boston, United States of America
Reviewer #1 (Public Review):
Solution state 15N backbone NMR relaxation from proteins reports on the reorientational properties of the N-H bonds distributed throughout the peptide chain. This information is crucial to understanding the motions of intrinsically disordered proteins and as such has focussed the attention of many researchers over the last 20-30 years, both experimentally, analytically and using numerical simulation.
This manuscript proposes an empirical approach to the prediction of transverse 15N relaxation rates, using a simple formula that is parameterised against a set of 45 proteins. Relaxation rates measured under a wide range of experimental conditions are combined to optimize residue-specific parameters such that they reproduce the overall shape of the relaxation profile. The purely empirical study essentially ignores NMR relaxation theory, which is unfortunate, because it is likely that more insight could have been derived if theoretical aspects had been considered at any level of detail.
Despite some novel aspects, in particular the diversity of the relaxation data sets, the residue-specific parameters do not provide much new insight beyond earlier work that has also noted that sidechain bulkiness correlated with the profile of R2 in disordered proteins.
Nevertheless, the manuscript provides an interesting statistical analysis of a diverse set of deposited transverse relaxation rates that could be useful to the community.
Crucially, and somewhat in contradiction to the authors stated aims in the introduction, I do not feel that the article delivers real insight into the nature of IDP dynamics. Related to this, I have difficulty understanding how an approximate prediction of the overall trend of expected transverse relaxation rates will be of further use to scientists working on IDPs. We already know where the secondary structural elements are (from 13C chemical shifts which are essential for backbone assignment) and the necessary 'scaling' of the profile to match experimental data actually contains a lot of the information that researchers seek.
1. The introduction is confusing, mixing different contributions to R2 as if they emanated from the same physics, which is not necessarily true. 15N transverse relaxation is said to report on 'slower' dynamics from 10s of nanoseconds up to 1 microsecond. Semi-classical Redfield theory shows that transverse relaxation is sensitive to both adiabatic and non-adiabatic terms, due to spin state transitions induced by stochastic motions, and dephasing of coherence due to local field changes, again induced by stochastic motions. These are faster than the relaxation limit dictated by the angular correlation function. Beyond this, exchange effects can also contribute to measured R2. The extent and timescale limit of this contribution depends on the particular pulse sequence used to measure the relaxation. The differences in the pulse sequences used could be presented, and the implications of these differences for the accuracy of the predictive algorithm discussed.
2. Previous authors have noted the correlation between observed transverse relaxation rates and amino acid sidechain bulkiness. Apart from repeating this observation and optimizing an apparently bulkiness-related parameter on the basis of R2 profiles, I am not clear what more we learn, or what can be derived from such an analysis. If one can possibly identify a motif of secondary structure because raised R2 values in a helix, for example, are missed from the prediction, surely the authors would know about the helix anyway, because they will have assigned the 13C backbone resonances, from which helical propensity can be readily calculated.
3. Transverse relaxation rates in IDPs are often measured to a precision of 0.1s-1 or less. This level of precision is achieved because the line-shapes of the resonances are very narrow and high resolution and sensitivity are commonly measurable. The predictions of relaxation rates, even when applying uniform scaling to optimize best-agreement, is often different to experimental measurement by 10 or 20 times the measured accuracy. There are no experimental errors in the figures. These are essential and should be shown for ease of comparison between experiment and prediction.
4. The impact of structured elements on the dynamic properties of IDPs tethered to them is very well studied in the literature. Slower motions are also increased when, for example the unfolded domain binds a partner, because of the increased slow correlation time. The ad hoc 'helical boosting' proposed by the authors seems to have the opposite effect. When the helical rates are higher, the other rates are significantly reduced. I guess that this is simply a scaling problem. This highlights the limitation of scaling the rates in the secondary structural element by the same value as the rest of the protein, because the timescales of the motion are very different in these regions. In fact the scaling applied by the authors contains very important information. It is also not correct to compare the RMSD of the proposed method with MD, when MD has not applied a 'scaling'. This scaling contains all the information about relative importance of different components to the motion and their timescales, and here it is simply applied and not further analysed.
5. Generally, the uniform scaling of all values by the same number is serious oversimplification. Motions are happening on all timescales they are giving rise to different transverse relaxation. It is not possible to describe IDP relaxation in terms of one single motion. Detailed studies over more than 30 years, have demonstrated that more than one component to the autocorrelation function is essential in order to account for motions on different timescales in denatured, partially disordered or intrinsically unfolded states. If one could 'scale' everything by the same number, this would imply that only one timescale of motion were important and that all others could be neglected, and this at every site in the protein. This is not expected to be the case, and in fact in the examples shown by the authors it is also never the case. There are always regions where the predicted rates are very different from experiment (with respect to experimental error), presumably because local dynamics are occurring on different timescales to the majority of the molecule. These observations contain useful information, and the observation that a single scaling works quite well probably tells us that one component of the motion is dominant, but not universally. This could be discussed.
6. With respect to the accuracy of the prediction, discussion about molecular detail such as pi-pi interactions and phase separation propensity is possibly a little speculative.
7. The authors often declare that the prediction reproduces the experimental data. The comparisons with experimental data need to be presented in terms of the chi2 per residue, using the experimentally measured precision which as mentioned, is often very high.
Reviewer #2 (Public Review):
Qin, Sanbo and Zhou, Huan-Xiang created a model, SeqDYN, to predict nuclear magnetic resonance (NMR) spin relaxation spectra of intrinsically disordered proteins (IDPs), based primarily on amino acid sequence. To fit NMR data, SeqDYN uses 21 parameters, 20 that correspond to each amino acid, and a sequence correlation length for interactions. The model demonstrates that local sequence features impact the dynamics of the IDP, as SeqDYN performs better than a one residue predictor, despite having similar numbers of parameters. SeqDYN is trained using 45 IDP sequences and is retrained using both leave-one-out cross validation and five-fold cross validation, ensuring the model's robustness. While SeqDYN can provide reasonably accurate predictions in many cases, the authors note that improvements can be made by incorporating secondary structure predictions, especially for alpha-helices that exceed the correlation length of the model. The authors apply SeqDYN to study nine IDPs and a denatured ordered protein, demonstrating its predictive power. The model can be easily accessed via the website mentioned in the text.
While the conclusions of the paper are primarily supported by the data, there are some points that could be extended or clarified.
1. The authors state that the model includes 21 parameters. However, they exclude a free parameter that acts as a scaling factor and is necessary to fit the experimental data (lambda). As a result, SeqDYN does not predict the spectrum from the sequence de-novo, but requires a one parameter fitting. The authors mention that this factor is necessary due to non-sequence dependent factors such as the temperature and magnetic field strength used in the experiment. Given these considerations, would it be possible to predict what this scaling factor should be based on such factors?
2. The authors mention that the Lorentzian functional form fits the data better than a Gaussian functional form, but do not present these results.
3. The authors mention that they conducted five-fold cross validation to determine if differences between amino acid parameters are statistically significant. While two pairs are mentioned in the text, there are 190 possible pairs, and it would be informative to more rigorously examine the differences between all such pairs.
Reviewer #3 (Public Review):
The manuscript by Qin and Zhou presents an approach to predict dynamical properties of an intrinsically disordered protein (IDP) from sequence alone. In particular, the authors train a simple (but useful) machine learning model to predict (rescaled) NMR R2 values from sequence. Although these R2 rates only probe some aspects of IDR dynamics and the method does not provide insight into the molecular aspects of processes that lead to perturbed dynamics, the method can be useful to guide experiments.
A strength of the work is that the authors train their model on an observable that directly relates to protein dynamics. They also analyse a relatively broad set of proteins which means that one can see actual variation in accuracy across the proteins.
A weakness of the work is that it is not always clear what the measured R2 rates mean. In some cases, these may include both fast and slow motions (intrinsic R2 rates and exchange contributions). This in turn means that it is actually not clear what the authors are predicting. The work would also be strengthened by making the code available (in addition to the webservice), and by making it easier to compare the accuracy on the training and testing data.