Respiratory and Cardiac Interoceptive Sensitivity in the First Two Years of Life

  1. University of Vienna, Faculty of Psychology, Department of Developmental and Educational Psychology, Austria
  2. Vienna Doctoral School Cognition, Behavior and Neuroscience, University of Vienna, Vienna, Austria
  3. Ludwig-Maximilians-Universität München, Munich, Germany
  4. School of Human and Behavioural Sciences, College of Human Sciences, Prifysgol Bangor University, Gwynedd, Wales, LL57 2AS, United Kingdom
  5. Department of Developmental Psychology, University of Potsdam, Germany
  6. Department of Psychology, Royal Holloway University of London, the United Kingdom
  7. Max Plank Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Peer review process

Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Jessica Dubois
    Inserm Unité NeuroDiderot, Université Paris Cité, Paris, France
  • Senior Editor
    Timothy Behrens
    University of Oxford, Oxford, United Kingdom

Reviewer #1 (Public review):

Summary:

The authors of this study investigated the development of interoceptive sensitivity in the context of cardiac and respiratory interoception in 3-, 9-, and 18-month-old infants using a combination of both cross-sectional and longitudinal designs. They utilised the cardiac interoception paradigm developed by Maister et al (2017) and also developed a new paradigm to investigate respiratory interoception in infants. The main findings of this research are that 9-month-old infants displayed a preference for stimuli presented synchronously with their own heartbeat and respiration. The authors found less reliable effects in the 18-month-old group, and this was especially true for the respiratory interoceptive data. The authors replicated a visual preference for synchrony over asynchrony for the cardiac domain in 3-month-old infants, while they found inconclusive evidence regarding the respiratory domain. Considering the developmental nature of the study, the authors also investigated the presence of developmental trajectories and associations between the two interoceptive domains. They found evidence for a relationship between cardiac and respiratory interoceptive sensitivity at 18 months only and preliminary evidence for an increase in respiratory interoception between 9 and 18 months.

Strengths:

The conclusions of this paper are mostly well supported by data, and the data analysis procedures are rigorous and well justified. The main strengths of the paper are:

- A first attempt to explore the association between two different interoceptive domains. How different organ-specific axes of interoception relate to each other is still open and exploring this from a developmental lens can help shed light into possible relationships. The authors have to be commended for developing a novel interoceptive tasks aimed at assessing respiratory interoceptive sensitivity in infants and toddlers, and for trying to assess the relationship between cardiac and respiratory interoception across developmental time.
- A thorough justification of the developmental ages selected for the study. The authors provide a rationale behind their choice to examine interoceptive sensitivity at 3, 9, and 18-months of age. These are well justified based on the literature pertaining to self- and social development. Sometimes, I wondered whether explaining the link between these self and social processes and interoception would have been beneficial as a reader not familiar with the topics may miss the point.
- An explanation of direction of looking behaviour using latent curve analysis. I found this additional analysis extremely helpful in providing a better understanding of the data based on previous research and analytical choices. As the authors explain in the manuscript, it is often difficult to interpret the direction of infant looking behaviour as novelty and familiarity preferences can also be driven by hidden confounders (e.g. task difficulty). The authors provide compelling evidence that analytical choices can explain some of these effects. Beyond the field of interoception, these findings will be relevant to development psychologists and will inform future studies using looking time as a measure of infants' ability to discriminate among stimuli.
- The use of simulation analysis to account for small sample size. The authors acknowledge that some of the effects reported in their study could be explained by a small sample size (i.e. the 3-month-olds and 18-month-olds data). Using a simulation approach, the authors try to overcome some of these limitations and provide convincing evidence of interoceptive abilities in infancy and toddlerhood (but see also my next point).

Weaknesses:

- While the research question is timely and the methodology is detailed, there is a critical flaw in the experimental design: the lack of randomization of stimuli due to an error in the programming script. The authors very honestly report this error and have performed additional analyses to investigate its potential impact on the study's results. Unfortunately, I am not fully convinced these analyses provide enough reassurance and I believe the technical error still undermines the validity of the findings, making it difficult to draw meaningful conclusions.

Reviewer #2 (Public review):

Summary:

This study by Tünte et al. investigated the development of interoceptive sensitivity during the first year of life, focusing specifically on cardiac and respiratory sensitivity in infants aged 3, 9, and 18 months. The research employed a previously developed experimental paradigm for the cardiac domain and adapted it for a novel paradigm in the respiratory domain. This approach assessed infants' cardiac and respiratory sensitivity based on their preferential looking behavior toward visuo-auditory stimuli displayed on a monitor, which moved either in sync or out of sync with the infants' own heartbeats or breathing. The results in the cardiac domain showed that infants across all age groups preferred stimuli moving synchronously rather than asynchronously with their heartbeat, suggesting the presence of cardiac sensitivity as early as 3 months of age. However, it is noteworthy that this preference direction contradicts a previous study, which found that 5-month-old infants looked longer at stimuli moving asynchronously with their heartbeat (Maister et al., 2017). In the respiratory domain, only the group of 9-month-old infants showed a preference for stimuli presented synchronously with their breathing. The authors conducted various statistical analyses to thoroughly examine the obtained data, providing deeper insights valuable for future research in this field.

Strengths:

Few studies have explored the early development of interoception, making the replication of the original study by Maister et al. (2017) particularly valuable. Beyond replication, this study expands the investigation into the respiratory domain, significantly enhancing our understanding of interoceptive development. The provision of longitudinal and cross-sectional data from infants at 3, 9, and 18 months of age is instrumental in understanding their developmental trajectory.

Weaknesses:

Due to a technical error, this study failed to counterbalance the conditions of the first trial in both the iBEAT and iBREATH tests. Although the authors addressed this issue as much as possible by employing alternative analyses, it should be noted that this error may have critically influenced the results and, thus, the conclusions.

Author response:

The following is the authors’ response to the original reviews.

Reviewer #1 Public:

- The authors should carefully address the potential confounding of not counterbalancing the conditions of the first trial in both interoceptive tasks for the 9-month and 18-month age groups. The results of these groups could indeed be driven by having seen the synchronous trial first.

Upon addressing this comment, we noticed an error in our presentation scripts that resulted in a fixed-experimental design for most of the infants. Therefore, it is crucial to investigate the impact of the fixed-experimental design on our results. We have conducted extensive additional analyses comparing data from infants with the inadvertent fixed design to data from infants for whom the randomization was achieved as intended, which can be found in Supplementary Materials A. In summary, we do not find that the fixed order design had a strong impact on the findings, as we do not find that looking behavior differed systematically between different randomization orders, while also looking patterns across ages and tasks indicate that we were able to adequately capture variance associated with these features. Further, we have adapted the interpretation of the results across the manuscript to acknowledge the experimental error and its implications on the interpretation of the results.

For instance, on pages 30 and 31 we have added the following paragraphs:

“The data presented in this study holds several limitations. First, due to an error in our experimental scripts we unintentionally used a fixed-order design, in which almost all infants saw the same fixed order of condition (always starting with a synchronous trial), image assigned to condition, and location of the image (left/right) instead of a semi-randomized design. Such a fixed-order design holds several important limitations as visual preferences might be influenced by the experimental design, i.e., the first trial always being synchronous might have influenced a mean group preference. Further, we cannot rule out that mean group preferences were influenced by the stimuli used (as in most cases the same stimuli were used for synchronous/asynchronous trials) or by the location of the image in a given trial (left/right). Still, there is no strong theoretical argument as to why image used or location should have an impact on infants’ preferences. The stimuli were selected to be similar to each other, in order not to evoke a piori preferences. To further illustrate the impact of the fixed order design we have conducted several additional analyses, which can be found in Supplementary Materials A, which do not indicate that there was a strong impact of the fixed-order design. Specifically, we find no evidence for systematic differences between infants tested with the fixed design and infants tested with a randomized design.

Despite these limitations fixed-order designs also hold advantages, as they are more suitable to investigate individual differences (Dang et al., 2020; Hedge et al., 2018). When each participant is exposed to the same procedure, individual differences are less likely to be attributed to effects of randomization but are more likely to reflect real differences between participants. Also, when considering the impact of the randomization, one must consider our results in relation to earlier studies (Maister et al. 2017, Weijs et al. 2022, Imafuku et al. 2023), some of which used the exact same stimuli as we did (Maister et al., 2017), with fully randomized designs. Results of these studies indicate no looking times differences depending on the stimulus assigned to each condition or systematic preferences for one of the stimuli.”

- The conclusion that cardiac interoception remains stable across infancy is not fully warranted by the data. Given the small sample size of 18-month-old toddlers included in the final analyses, it might be misleading to state this without including the caveat that the study may be underpowered. In other words, the small sample size could explain the direction of the results for this age group.

We agree with the reviewer and explicitly acknowledge this issue now in the discission, p. 23:

“However, due to the small sample size at 18 months the results regarding changes and stability of interoceptive sensitivity in the second year of life must be considered speculative and need to be validated in further research.”

Reviewer #1 (Recommendations For The Authors):

Below are some comments that the authors may wish to take into account:

- Why did the authors choose to apply different statistical analyses across the dataset (i.e. Bayesian t-test is used with the 3-month-old sample, whereas a paired t-test is used for the 9 and 18-month-olds)?

The use of different statistical analyses was driven by the timeline of the project, as we had to update our initial plans. Due to challenges related to the Covid-19 pandemic, it was not possible to recruit 3-month-old babies for out study at the time we started the data collection. Thus, we first collected the 9- and 18-month-olds, and the 3-month-olds later. For the 9- and 18-month-old samples we aimed at directly replicating the approach by Maister et al. (2017). However, for the 3-month-olds we wanted to focus more on classification of the strength of evidence in favor/against an effect, taking the results of the equivalence tests for the 9- and 18-month-olds into account.

The following parts have been added to the manuscript to clarify our approach:

Sample (p 33): “The 3-month-old sample was tested after completion of the 9- and 18-monthold samples. Initially, we had planned to start data collection with the 3-month-old sample.

However, due to the Covid-19 pandemic this was not possible.”

Statistical analysis (p. 41): “At 3 months we used a Bayesian paired t-test as the data collection was done after having collected the 9- and 18-month-old samples. Our intention in the analysis of the 3-month-old sample was to focus more strongly on strength of evidence in favor of/against an effect instead of a binary classification for/against an effect.”

- I found the way in which sample sizes are reported a little unclear. This may be due to having the Results section before the Methods section (in line with journal requirements), but it would be helpful if the authors could clarify their sample size from the outset. For example, sample size for the 3-month-olds first says N = 80 (page 9), but then it becomes apparent that N = 53 completed the iBEAT and N = 40 completed the iBREATH. I think for the purpose of explaining the results, it might be more helpful to the reader to only know the final sample size and then specify recruited participants and dropout in the Methods.

We have adapted the description of sample sizes in the Results section. We now only refer to the number of infants included in a given analysis when reporting the results of the analysis. In addition, we have added the following clarification for the MEGA analysis (p. 11): “This approach allowed us to include 135 observations for the iBEATs from 125 infants, and 120 observations for the iBREATH from 107 infants. The sample size differs slightly from our preregistered approach given that we used the same preprocessing approach for the MEGAanalysis for all samples. “

In addition, we now refer to the sample of the MEGA-analysis in the abstract, to make the understanding of our approach more intuitive.

- I think the sentence "Interestingly, we find evidence for a positive relationship between cardiac and respiratory perception in our 18-month-old sample" at page 25 could be deleted given that the small sample size of 18-month-olds suggests this result should be interpreted with caution. The authors already explained this in the earlier paragraph (page 24) and simply re-stating this (weak) effect without further elaborating may not be necessary.

We have removed the sentence.

- In multiple places in the manuscript, the authors hint at the association between interoception and certain social and self-related abilities (e.g. joint attention, mirror self-recognition), however, these are not fully elaborated on. Could the authors elaborate on the relation between mirror self-recognition and respiratory interoception (page 30)? Why would the ability to recognise the self-face be associated with the individual's ability to perceive their breathing pattern? How these two processes may be linked is not immediately obvious.

We have rephrased the sentence on page 30 to highlight that the increase in respiratory perception found in our results happens at a similar age as increases in other domains that might be related to interoception. “A hypothesis to be tested in future research is that developmental improvement in respiratory perception might be related to increases in other domains that show links to interoception. For instance, self-perception matures towards the end of the second year of life and has been conceptually related to interoception (Fotopoulou & Tsakiris, 2017; Musculus et al., 2021). Further, gross motor development may be considered in future research, which drastically matures in the first two years of life (WHO Multicentre Growth Reference Study Group, 2006) and has been shown to be related to respiratory function in children with cerebral palsy (Kwon & Lee, 2014).”

- Aren't the 18-month-old infants effectively 19-month-olds? The mean age is 576.65 days, and the age window of recruitment was between 18 and 20 months.

We have added a sentence clarifying how we refer to the infants age ranges. “To stay coherent, we refer to each age group throughout the manuscript with regard to the lower end of the age range in which we included infants (e.g., we tested infants between 9 and 10 months, but refer to them as the 9-month-old group).”

Reviewer #2 Public:

Weaknesses:

(1) My primary concern is that this study did not counterbalance the conditions of the first trial in both iBEAT and iBREATH tests for the 9-month and 18-month age groups. In these tests, the first trial invariably involved a synchronous stimulus. I believe that the order of trials can significantly influence an infant's looking duration, and this oversight could potentially impact the results, especially where a marked preference for synchronous stimuli was observed among infants.

Upon conducting further analyses to address this comment, we noticed an error in our presentation scripts that resulted in the inadvertent use of a fixed-experimental design for most infants. Therefore, we have conducted extensive additional analysis which can be found in Supplementary Materials A. Specifically, we compared data from infants who were tested with the inadvertent fixed design to data from infants for whom the randomization was achieved as intended. Further, we have adapted the interpretation of the results across the manuscript to acknowledge the experimental error and its potential implications for the interpretation of the results.

(2) The analysis indicated that the study's sample size was too small to effectively assess the effects within each age group. This limitation fundamentally undermines the reliability of the findings.

We have added a statement addressing this issue to the limitation section: “The reduced sample size might have impacted the statistical power to detect mean preferences for some age groups. Still, it must be noted that even the smaller sample sizes included were of similar size as used in previous studies on infant interoceptive sensitivity (Imafuku et al., 2023; Maister et al., 2017; Weijs et al., 2023).”

(3) The authors attribute the infants' preferential-looking behavior solely to the effects of familiarity and novelty. However, the meaning of "familiarity" in relation to external stimuli moving in sync with an infant's heartbeat or breathing is not clearly defined. A deeper exploration of the underlying mechanisms driving this behavior, such as from the perspectives of attention and perception, is necessary.

We have adapted the respective paragraph in the discussion to clarify the term familiarity, and to also address that other aspects of attention and perception, might be relevant (p. 25):

“In this context familiarity might refer to the infant’s perception of congruence between internal signal and external stimuli which might drive the infant’s attention. Specifically, the synchronous condition should be easier to process due to the intersensory redundancy and predictability between interoceptive and external signals. “

“However, it is important to consider that other cognitive and attentional mechanisms could also influence these responses.”

Reviewer #2 (Recommendations For The Authors):

Introduction:

(1) The relevance of respiration to self-regulation and social interaction was not clearly described.

We have rephrased the relevant section to highlight that the increase in respiratory perception found in our results happens at a similar age as increases in other domains that might be related to interoception. “A hypothesis to be tested in future research is that developmental improvement in respiratory perception might be related to increases in other domains that show links to interoception. For instance, self-perception matures towards the end of the second year of life and has been conceptually related to interoception (Fotopoulou & Tsakiris, 2017; Musculus et al., 2021). Further, gross motor development may be considered in future research, which drastically matures in the first two years of life (WHO Multicentre Growth Reference Study Group, 2006) and has been shown to be related to respiratory function in children with cerebral palsy (Kwon & Lee, 2014).”

(2) In the last line of page 5, it might be more appropriate to use the term "meta-cognitive awareness" instead of "meta-perception," as the latter can refer to a different concept.

We have changed the word as recommended.

(3) The authors predicted a positive correlation in sensitivity between the cardiac and respiratory domains, despite studies in adults suggesting these are not related. How did the authors arrive at this prediction, and how do they interpret the results showing a correlation only in 18-montholds, the age group closest to adults in this study?

We have elaborated on our reasoning for our prediction (p. 7): “Adult cardiac and respiratory interoception paradigms typically use two conceptually different paradigms. Thus, null results in the adult literature might be due to the unique characteristics of those paradigms.”

Further, we have expanded on this result in the discussion (p. 24): “Still, we find a relationship between cardiac and respiratory signals in the oldest sample tested here, the 18-month-olds, which is closest to adults. Although this effect needs to be interpreted with caution due to the small sample size, this might indicate that using conceptually similar experimental paradigms might be a promising avenue to investigate relationships between different interoceptive modalities in adults.”

Results:

(4) Please provide the descriptive statistics (means and standard deviations of looking time) for each independent condition, especially for the 18-month and 3-month age groups where this information is missing and only differences in looking times between conditions were mentioned. Furthermore, since the asynchronous condition includes both fast and slow stimuli, descriptive statistics for each should be included to help readers determine whether effects are due to synchronicity or stimulus speed.

We have added the information on mean and sd of looking times to synch and asynch trials to the results section. Mean looking times to both types of asynchronous trials can be found in supplementary materials C. We have added the information about standard deviations to this part.

(5) Regarding the MEGA analysis for iBEATs, where a main effect of condition was found (OR = 1.13, t(1769) = 2.541, p = .011), are these t-value and p-value based on the GLMM analysis, or did the authors conduct a separate t-test? This query arises because the p-value of the main effect differs from that in Table 2. Also, is it conventional to present GLMM results in the manner of Table 2, comparing specific level combinations (i.e., synchronous condition and 3month age group), instead of listing main effects and interactions?

Thank you very much for pointing out that the results of the GLMM were not reported as precise as possible, which might lead to confusion over the presented p-values. The main effect of condition refers to a post-hoc comparison using estimated marginal means from the GLMM across all age groups, while Table 2 refers to the main effect of condition for age group 3 months.

To make the results more accessible we have restructured parts of the manuscript following your suggestions: In the main manuscript we now focus on the interaction effects for condition and age, as well as the post hoc comparison, while we now report null-full model comparison, and tables for all age groups in the supplements.

We have added the following clarifying sentences to the manuscript, p. 12:

“In reporting these results we focus on whether we found evidence for interactions between age groups, and whether we found evidence for a general effect across age groups. In-depth results and tables can be found in Supplementary Materials C.

[…]

Next, we computed post hoc comparisons using estimated marginal means from the MEGAanalysis across all age groups to investigate whether we find indications for a similar effect across ages.”

(6) I am confused about the results indicating a significant effect of condition for the iBREATH dataset excluding 18-month-olds (Table 5, OR = 1.15, t(1050) = 2.397, p = .017), as the description in Table 5 suggests no statistical significance (p = .070). The decision to exclude the 18-month group seems arbitrary, particularly since the age-by-condition interaction was not significant in the GLMM across all three age groups.

Thank you very much for the comment, we have removed the analysis excluding the 18-month-old group

(7) Regarding the relationship between cardiac and respiratory interoceptive sensitivity, the statement "However, we found a significant interaction between iBEATs scores and age at the 18-month level" (p16) seems unclear. Clarification is needed, as mentioning age interaction at a specific age stage is unusual. A pairwise comparison between 3 and 9 months should also be included.

Thank you for pointing out that the results could be presented more clearly! Similar to the other MEGA analyses we have put detailed tables of the results of the beta regression in the supplements and have kept a single table with the most important results in the main manuscript. Further, we have clarified the text passage as follows: “However, we found a significant interaction between the iBEATs scores and age, specifically comparing the 3- and 18-month-old groups (β = 3.13, SE = 1.41, p = .027). This interaction indicates that the relationship between iBEATs and iBREATH scores changes between 3 and 18 months of age.” Also, we have now included a pairwise comparison between 3- and 9-month-olds.

Discussion:

(8) In pages 27-28, the authors discuss the results of the specification curve analysis, but there is no explanation for the 7th entry (statistical analysis) in Table 9. This entry seems particularly important.

We did not include an explanation for the 7th entry, as the impact of the statistical test used was comparatively less pronounced. However, to acknowledge this result we have added the following sentence to the discussion: “Moreover, the statistical test used (paired t-test vs linear mixed model, Table 9, 7th entry) had a rather small impact on the results. However, given the large number of analyses conducted, this might be related to not being able to precisely formulate the model to fit the complexity of the data for each specification.”

Methods:

(9) What were the colors of the stimuli?

We have added the colors of the stimuli to the methods section. Further, the stimuli can be found in the osf project associated with the manuscript.

(10) The percentage of trials excluded during preprocessing should be stated. Additionally, the number of trials included in the statistical analyses for each condition (including synchronous, fast, and slow) should be detailed separately.

We have added information on numbers of trials completed and included in Table 7.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation