Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorChristine ClaytonCentre for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Senior EditorDominique Soldati-FavreUniversity of Geneva, Geneva, Switzerland
Reviewer #1 (Public Review):
Summary:
Ngoune et al. present compelling evidence that Slender cells are challenged to infect tsetse flies. They explore the experimental context of a recent important paper in the field, Schuster et al., that presents evidence suggesting the proliferative Slender bloodstream T.brucei can infect juvenile tsetse flies. Schuster et al. was disruptive to the widely accepted paradigm that the Stumpy bloodstream form is solely responsible for tsetse infection and T.brucei transmission potential.
Evidence presented here shows that in all cases, Stumpy form parasites are exponentially more capable of infecting tsetse flies. They further show that Slender cells do not infect mature flies.
However, they raise questions of immature tsetse immunological potential and field transmission potential that their experiments do not address. Specifically, they do not show that teneral tsetse flies are immunocompromised, that tsetse flies must be immunocompromised for Slender infection nor that younger teneral tsetse infection is not pertinent to field transmission.
Strengths:
Experimental Design is precise and elegant, outcomes are convincing. Discussion is compelling and important to the field. This is a timely piece that adds important data to a critical discussion of host:parasite interactions, of relevance to all parasite transmission.
Weaknesses:
As above, the authors dispute the biological relevance of teneral tsetse infection in the wild, without offering evidence to the contrary. Statements need to be softened for claims regarding immunological competence or relevance to field transmission.
Reviewer #2 (Public Review):
Summary:
In contrast to the recent findings reported by Schuster S et al., this brief paper presents evidence suggesting that the stumpy form of T. brucei is likely the most pre-adapted form to progress through the life cycle of this parasite in the tsetse vector.
Strengths:
One significant experimental point is that all fly infection experiments are conducted in the absence of "boosting" metabolites like GlcNAc or S-glutathione. As a result, flies infected with slender trypanosomes present very low or nonexistent infection rates. This provides important experimental evidence that the findings of Schuster S and colleagues may need to be revisited.
Weaknesses:
However, I believe the authors should have included their own set of experiments demonstrating that the presence of these metabolites in the infectious bloodmeal enhances infection rates in flies receiving blood meals containing slender trypanosomes. Considering the well-known physiological variabilities among flies from different facilities, including infection rates, this would have strengthened the experimental evidence presented by the authors.
Reviewer #3 (Public Review):
The dogma in the Trypanosome field is that transmission by Tsetse flies is ensured by stumpy forms. This has been recently challenged by the Engstler lab (Schuster et al. ), who showed that slender forms can also be transmitted by teneral flies. In this work, the authors aimed to test whether transmission by slender forms is possible and frequent. The authors observed that most stumpy forms infections with teneral and adult flies were successful while only 1 out of 24 slender form infections were successful.
In this revised version of the manuscript, the authors made some text changes and included statistical testing as a new section of the Materials and Methods. It seems the comparison of midgut infection in adult vs teneral flies was significant in most of the conditions. However, the critical comparison is still missing: within each type of fly (adult or teneral), was the MG infection significantly different between slender and stumpy forms?
Given no additional experiments were performed, it remains unknown why this work and Schuster et al. reached different conclusions. As a result it remains unclear in which conditions slender forms could be important for transmission. Several variables could explain differences between the two groups: the strain used, the presence or absence of N-acetylglucosamine and/or glutathione, how Tsetse colonies were maintained, thorough molecular and cellular characterisation of slender and stumpy forms (to avoid using intermediate forms as slender forms), comparison to recent field parasite strains.