Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorIvan TopisirovicJewish General Hospital, Montreal, Canada
- Senior EditorDetlef WeigelMax Planck Institute for Biology Tübingen, Tübingen, Germany
Reviewer #1 (Public Review):
Summary:
The study follows the role of yeast eIF2A protein as potential translation initiation factor engaged in the non-canonical translation initiation under stress conditions and as a substitute for eIF2. Using ribosome profiling, RNA-Seq and reporter based assays authors evaluated the role of eIF2A protein under regular or stress conditions (cells starved for branched amino acids). Authors found that yeast cells depleted of eIF2A protein do not change significantly their translation initiation, or translation in general. In the contrast to previously reported data for human homolog yeast eIF2A does not significantly contribute to regulation of the uORFs, regardless if they start with canonical AUG or near cognate start codons. eIF2A is not involved in the repression of IRES element in URE2 gene or has a role in purine biosynthesis. It appears that in yeast eIF2A contributes to regulation of very limited number of mRNAs (32 with significant changes in translation efficiency), where only 17 of such messages indeed are consistent with eIF2A deletion and single mRNA (HKR1) could be validated in reporter assay.
Strengths:
The strength of the manuscript is complete analysis and unbiased approach using genomic analysis methods (ribosome profiling and RNA-seq) as well as reporter validation studies. Additional strength of the manuscript is scientific rigor and statistics associated with data analyses, clear data presentation and discussion of the results in the context of the previous studies and results.
Weaknesses:
none noted
Reviewer #2 (Public Review):
Summary:
Gaikwad et al. investigated the role of eIF2A in translational response to stress in yeast. For this purpose, the authors conducted ribosome profiling under SM treatment in eIF2A-depleted strain. Data analysis revealed that eIF2A did not influence translation from mRNAs bearing uORFs or cellular IRESes, in the stress condition, broadly. The authors found that only a small number of mRNAs were supported by eIF2A. The data should be helpful for researchers in the fields.
Major points:
1. The weakness of this work is the lack of clarification on the function of eIF2A in general. The novelty of this study was limited.
2. Related to this, it would be worth investigating common features in mRNAs selectively regulated (surveyed in Figure 3A). Also, it would be worth analyzing the effect of eIF2A deletion on elongation (ribosome occupancy on each codon and/or global ribosome footprint distribution along CDS) and termination/recycling (footprint reads on stop codon and on 3′ UTR).
3. Regarding Figure 3D, the reporters were designed to include promoter and 5′ UTR of the target genes. Thus, it should be worth noting that reporter design was based on the assumption that eIF2A-dependency in translation regulation was not dependent on 3′ UTR or CDS region. The reason why the effects on ribosome profiling-supported mRNAs could not be recapitulated in reporter assay may originate from this design. This should be also discussed.
4. Related to the point above, the authors claimed that eIF2A affects "possibly only one" (HKR1) mRNA. However, this was due to the reporter assay which is technically variable and could not allow some of the constructs to pass the authors' threshold. Authors may be worth considering better wording for this point.
5. For Figure 3D, it would be worth considering to test all the #-marked genes (in Figure 3C) in this set up.
6. In box plots, the authors should provide the statistical tests, at least where the authors explained in the main text.
Reviewer #3 (Public Review):
Summary:
The authors have undertaken a study to rigorously characterize the possible role of eIF2A in regulating translation in yeast. The authors test for a role of eIF2A in the absence or presence of cellular stress and conclude that eIF2A does not play any significant role in regulating translation initiation in yeast.
The authors have used rigorous experimental approaches, including genome wide ribosome profiling analysis in the absence or presence of stress, to show that eIF2A does not function in translation initiation on most mRNAs in yeast. Interestingly, the authors do identify a small number of mRNAs that possess some eIF2A dependency, so they constructed reporters to rigorously test them. One mRNA, HKR1, appears to possess a degree of eIF2A-dependent translation regulation.
No role of eIF2A in translation initiation is apparent and one limitation of the study is that the authors do not determine what function eIF2A plays in yeast.