Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorPaul BarberKing's College London, London, United Kingdom
- Senior EditorTony NgKing's College London, London, United Kingdom
Reviewer #1 (Public Review):
Summary:
The manuscript proposes a series of steps using the FIJI environment, the authors have created a plugin for the initial steps of the process, merging images into an RGB stack, conversion to HSV, and then using brightness for reference and hue to distinguish the phases of the cycle. Then, the well-known Trackmate plugin was used to identify single cells and extract intensities. The data was further post-processed in R, where a series of steps, smoothing, scaling, and addressing missing frames were used to train a random forest. Hard-coded values of hue were used to distinguish G1, S, and G2/M. The process was validated with a score comparing the quality of the tracks and the authors reported the successful measure of the cell cycles.
Strengths:
The implementation of the pipeline seems easy, although it requires two separate platforms: Fiji and R. A similar approach could be implemented in a single programming environment like Python or Matlab and there would not be any need to export from one to the other. However, many labs have similar setups and that is not necessarily a problem.
Weaknesses:
I found two important weaknesses in the proposal:
(1) The pipeline relies on a large number of hard-coded conditions: size of Gaussian blur (Gaussian should be written in uppercase), values of contrast, size of filters, levels of intensity, etc. Presumably, the authors followed a heuristic approach and tried values of these and concluded that the ones proposed were optimal. A proper sensitivity analysis should be performed. That is, select a range of values of the variables and measure the effect on the output.
(2) Linked to the previous comments. Other researchers that want to follow the pipeline would have either to have exactly the same acquisition conditions as the manuscript or start playing with values and try to compensate for any difference in their data (cell diameter, fluorescent intensity, etc.) to see if they can match the results of the manuscript.
Reviewer #2 (Public Review):
Summary:
This paper presents an automated method to track individual mammalian cells as they progress through the cell cycle using the FUCCI system and applies the method to look at different tumor cell lines that grow in suspension and determine their cell cycle profile and the effect of drugs that directly affect the cell cycles, on progression through the cell cycle for a 72 hour period.
Strengths:
This is a METHODS paper. The one potentially novel finding is that they can identify cells that are at the G1-S transition by the change in color as one protein starts to go up and the other one goes down, similar to the change seen as cells enter G2/M.
Weaknesses:
They did not clearly indicate whether the G1/S cells are identified automatically or need to be identified by the person reviewing the data. In Figures 1 and S1, the movie shows cells with no color at a time corresponding to what is about the G1/S transition. Their assigned cell cycle phase is shown in Figure 1 but not in Figure S1. None of these pictures show the G1/S cells that they talk about being able to detect with a different color.