Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorYukiko YamashitaWhitehead Institute/MIT, Cambridge, United States of America
- Senior EditorWei YanThe Lundquist Institute, Torrance, United States of America
Reviewer #1 (Public Review):
Summary:
The manuscript by Raices et al., provides novel insights into the role and interactions between SPO-11 accessory proteins in C. elegans. The authors propose a model of meiotic DSBs regulation, critical to our understanding of DSB formation and ultimately crossover regulation and accurate chromosome segregation. The work also emphasizes the commonalities and species-specific aspects of DSB regulation.
Strengths:
This study capitalizes on the strengths of the C. elegans system to uncover genetic interactions between a large number of SPO-11 accessory proteins. In combination with physical interactions, the authors synthesize their findings into a model, which will serve as the basis for future work, to determine mechanisms of DSB regulation.
Weaknesses:
The methodology, although standard, lacks quantification. This includes the mass spectrometry data, along with the cytology. The work would also benefit from clarifying the role of the DSB machinery on the X chromosome versus the autosomes.
Reviewer #2 (Public Review):
Summary:
Meiotic recombination initiates with the formation of DNA double-strand break (DSB) formation, catalyzed by the conserved topoisomerase-like enzyme Spo11. Spo11 requires accessory factors that are poorly conserved across eukaryotes. Previous genetic studies have identified several proteins required for DSB formation in C. elegans to varying degrees; however, how these proteins interact with each other to recruit the DSB-forming machinery to chromosome axes remains unclear.
In this study, Raices et al. characterized the biochemical and genetic interactions among proteins that are known to promote DSB formation during C. elegans meiosis. The authors examined pairwise interactions using yeast two-hybrid (Y2H) and co-immunoprecipitation and revealed an interaction between a chromatin-associated protein HIM-17 and a transcription factor XND-1. They further confirmed the previously known interaction between DSB-1 and SPO-11 and showed that DSB-1 also interacts with a nematode-specific HIM-5, which is essential for DSB formation on the X chromosome. They also assessed genetic interactions among these proteins, categorizing them into four epistasis groups by comparing phenotypes in double vs. single mutants. Combining these results, the authors proposed a model of how these proteins interact with chromatin loops and are recruited to chromosome axes, offering insights into the process in C. elegans compared to other organisms.
Weaknesses:
This work relies heavily on Y2H, which is notorious for having high rates of false positives and false negatives. Although the interactions between HIM-17 and XND-1 and between DSB-1 and HIM-5 were validated by co-IP, the significance of these interactions was not tested, and cataloging Y2H interactions does not yield much more insight. Moreover, most experiments lack rigor, which raises serious concerns about whether the data convincingly supports the conclusions of this paper. For instance, the XND-1 antibody appears to detect a band in the control IP; however, there was no mention of the specificity of this antibody. Additionally, epistasis analysis of various genetic mutants is based on the quantification of DAPI bodies in diakinesis oocytes, but the comparisons were made without statistical analyses. For cytological data, a single representative nucleus was shown without quantification and rigorous analysis. The rationale for some experiments is also questionable (e.g. the rescue by dsb-2 mutants by him-5 transgenes in Figure 2), making the interpretation of the data unclear. Overall, while this paper claims to present "the first comprehensive model of DSB regulation in a metazoan", cataloging Y2H and genetic interactions did not yield any new insights into DSB formation without rigorous testing of their significance in vivo. The model proposed in Figure 4 is also highly speculative.
Reviewer #3 (Public Review):
During meiosis in sexually reproducing organisms, double-strand breaks are induced by a topoisomerase-related enzyme, Spo11, which is essential for homologous recombination, which in turn is required for accurate chromosome segregation. Additional factors control the number and genome-wide distribution of breaks, but the mechanisms that determine both the frequency and preferred location of meiotic DSBs remain only partially understood in any organism.
The manuscript presents a variety of different analyses that include variable subsets of putative DSB factors. It would be much easier to follow if the analyses had been more systematically applied. It is perplexing that several factors known to be essential for DSB formation (e.g., cohesins, HORMA proteins) are excluded from this analysis, while it includes several others that probably do not directly contribute to DSB formation (XND-1, HIM-17, CEP-1, and PARG-1). The strongest claims seem to be that "HIM-5 is the determinant of X-chromosome-specific crossovers" and "HIM-5 coordinates the actions of the different accessory factors sub-groups." Prior work had already shown that mutations in him-5 preferentially reduce meiotic DSBs on the X chromosome. While it is possible that HIM-5 plays a direct role in DSB induction on the X chromosome, the evidence presented here does not strongly support this conclusion. It is also difficult to reconcile this idea with evidence from prior studies that him-5 mutations predominantly prevent DSB formation on the sex chromosomes, while the protein localizes to autosomes. The one experiment that seems to elicit the conclusion that HIM-5 expression is sufficient for breaks on the X chromosome is flawed (see below). The conclusion that HIM-5 "coordinates the activities of the different accessory sub-groups" is not supported by data presented here or elsewhere.
Like most other studies that have examined DSB formation in C. elegans, this work relies on indirect assays, here limited to the cytological appearance of RAD-51 foci and bivalent chromosomes, as evidence of break formation or lack thereof. Unfortunately, neither of these assays has the power to reveal the genome-wide distribution or number of breaks. These assays have additional caveats, due to the fact that RAD-51 association with recombination intermediates and successful crossover formation both require multiple steps downstream of DSB induction, some of which are likely impaired in some of the mutants analyzed here. This severely limits the conclusions that can be drawn. Given that the goal of the work is to understand the effects of individual factors on DSB induction, direct physical assays for DSBs should be applied; many such assays have been developed and used successfully in other organisms.
Throughout the manuscript, the writing conflates the roles played by different factors that affect DSB formation in very different ways. XND-1 and HIM-17 have previously been shown to be transcription factors that promote the expression of many germline genes, including genes encoding proteins that directly promote DSBs. Mutations in either xnd-1 or him-17 result in dysregulation of germline gene expression and pleiotropic defects in meiosis and fertility, including changes in chromatin structure, dysregulation of meiotic progression, and (for xnd-1) progressive loss of germline immortality. It is thus misleading to refer to HIM-17 and XND-1 as DSB "accessory factors" or to lump their activities with those of other proteins that are likely to play more direct roles in DSB induction. For example, statements such as the following sentence in the Introduction should be omitted or explained more clearly: "xnd-1 is also unique among the accessory factors in influencing the timing of DSBs; in the absence of xnd-1, there is precocious and rapid accumulation of DSBs as monitored by the accumulation of the HR strand-exchange protein RAD-51." The evidence that HIM-17 promotes the expression of him-5 presented here corroborates data from other publications, notably the recent work of Carelli et al. (2022), but this conclusion should not be presented as novel here. The other factors also fall into several different functional classes, some of which are relatively well understood, based largely on studies in other organisms. The roles of RAD-50 and MRE-11 in DSB induction have been investigated in yeast and other organisms as well as in several prior studies in C. elegans. DSB-1, DSB-2, and DSB-3 are homologs of relatively well-studied meiotic proteins in other organisms (Rec114 and Mei4) that directly promote the activity of Spo11, although the mechanism by which they do so is still unclear. Mutations in PARG-1 (a Poly-ADP ribose glycohydrolase) likely affect the regulation of poly-ADP-ribose addition and removal at sites of DSBs, which in turn are thought to regulate chromatin structure and recruitment of repair factors; however, there is no convincing evidence that PARG-1 directly affects break formation. CEP-1 is a homolog of p53 and is involved in the DNA damage response in the germline, but again is unlikely to directly contribute to DSB induction. HIM-5 and REC-1 do not have apparent homologs in other organisms and play poorly understood roles in promoting DSB induction. A mechanistic understanding of their functions would be of value to the field, but the current work does not shed light on this. A previous paper (Chung et al. G&D 2015) concluded that HIM-5 and REC-1 are paralogs arising from a recent gene duplication, based on genetic evidence for a partially overlapping role in DSB induction, as well as an argument based on the genomic location of these genes in different species; however, these proteins lack any detectable sequence homology and their predicted structures are also dissimilar (both are largely unstructured but REC-1 contains a predicted helical bundle lacking in HIM-5). Moreover, the data presented here do not reveal overlapping sets of genetic or physical interactions for the two genes/proteins. Thus, this earlier conclusion was likely incorrect, and this idea should not be restated uncritically here or used as a basis to interpret phenotypes.
DSB-1 was previously reported to be strictly required for all DSB and CO formation in C. elegans. Here the authors test whether the expression of HIM-5 from the pie-1 promoter can rescue DSB formation in dsb-1 mutants, and claim to see some rescue, based on an increase in the number of nuclei with one apparent bivalent (Figure 2C). This result seems to be the basis for the claim that HIM-5 coordinates the activities of other DSB proteins. However, this assay is not informative, and the conclusion is almost certainly incorrect. Notably, a substantial number of nuclei in the dsb-1 mutant (without Ppie-1::him-5) are reported as displaying a single bivalent (11 DAPI staining bodies) despite prior evidence that DSBs are absent in dsb-1 mutants; this suggests that the way the assay was performed resulted in false positives (bivalents that are not actually bivalents), likely due to inclusion of nuclei in which univalents could not be unambiguously resolved in the microscope. A slightly higher level of nuclei with a single unresolved pair of chromosomes in the dsb-1; Ppie-1::him-5 strain is thus not convincing evidence for rescue of DSBs/CO formation, and no evidence is presented that these putative COs are X-specific. The authors should provide additional experimental evidence - e.g., detection of RAD-51 and/or COSA-1 foci or genetic evidence of recombination - or remove this claim. The evidence that expression of Ppie-1::him-5 may partially rescue DSB abundance in dsb-2 mutants is hard to interpret since it is currently unknown why C. elegans expresses 2 paralogs of Rec114 (DSB-1 and DSB-2), and the age-dependent reduction of DSBs in dsb-2 mutants is not understood.
Several of the factors analyzed here, including XND-1, HIM-17, HIM-5, DSB-1, DSB-2, and DSB-3, have been shown to localize broadly to chromatin in meiotic cells. Co-immunoprecipitation of pairs of these factors, even following benzonase digestion, is not strong evidence to support a direct physical interaction between proteins. Similarly, the super-resolution analysis of XND-1 and HIM-17 (Figure 1EF) does not reveal whether these proteins physically interact with each other, and does not add to our understanding of these proteins' functions, since they are already known to bind to many of the same promoters. Promoters are also likely to be located in chromatin loops away from the chromosome axis, so in this respect, the localization data are also confirmatory rather than novel.
The phenotypic analysis of double mutant combinations does not seem informative. A major problem is that these different strains were only assayed for bivalent formation, which (as mentioned above) requires several steps downstream of DSB induction. Additionally, the basis for many of the single mutant phenotypes is not well understood, making it particularly challenging to interpret the effects of double mutants. Further, some of the interactions described as "synergistic" appear to be additive, not synergistic. While additive effects can be used as evidence that two genes work in different pathways, this can also be very misleading, especially when the function of individual proteins is unknown. I find that the classification of genes into "epistastasis groups" based on this analysis does not shed light on their functions and indeed seems in some cases to contradict what is known about their functions.
The yeast two-hybrid (Y2H) data are only presented as a single colony. While it is understandable to use a 'representative' colony, it is ideal to include a dilution series for the various interactions, which is how Y2H data are typically shown.
Additional (relatively minor) concerns about these data:
(1) Several interactions reported here seem to be detected in only one direction - e.g., MRE-11-AD/HIM-5-BD, REC-1-AD/XND-1-BD, and XND-1-AD/HIM-17-BD - while no interactions are seen with the reciprocal pairs of fusion proteins. I'm not sure if some of this is due to pasting "positive" colony images into the wrong position in the grid, but this should be addressed.
(2) DSB-3 was only assayed in pairwise combinations with a subset of other proteins; this should be explained; it is also unclear why the interaction grids are not symmetrical about the diagonal.
(3) I don't understand why the graphic summaries of Y2H data are split among 3 different figures (1, 2, and 3).