Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorIlona Grunwald KadowUniversity of Bonn, Bonn, Germany
- Senior EditorAlbert CardonaUniversity of Cambridge, Cambridge, United Kingdom
Reviewer #1 (Public review):
Summary:
Authors explore how sex-peptide (SP) affects post-mating behaviours in adult females, such as receptivity and egg laying. This study identifies different neurons in the adult brain and the VNC that become activated by SP, largely by using an intersectional gene expression approach (split-GAL4) to narrow down the specific neurons involved. They confirm that SP binds to the well-known Sex Peptide Receptor (SPR), initiating a cascade of physiological and behavioural changes related to receptivity and egg laying.
Comments on revised version:
The authors have substantially strengthened the manuscript in response to our main concerns.
In particular, they now explicitly test multiple established PMR nodes (including SAG/SPSN as well as pC1, OviDN/OviEN/OviIN and vpoDN), which helps separate direct SP targets from downstream PMR circuitry and supports their interpretation that some of these known nodes can affect receptivity without necessarily inducing oviposition. They also addressed key technical/clarity points: the requested head/trunk expression controls are provided (Suppl Fig S1), and the VT003280 annotation is corrected (now FD6 rather than "SAG driver"). Overall, these additions make the central conclusion, that distinct CNS neuron subsets ("SPRINz") are sufficient to elicit PMR components, more convincing, and the added comparisons with genital tract expressing lines further argue against a simple "periphery only" explanation.
Reviewer #2 (Public review):
Sex peptide (SP) transferred during mating from male to female induces various physiological responses in the receiving female. Among those, the increase in oviposition and decrease in sexual receptivity are very remarkable. Naturally, a long standing and significant question is the identify of the underlying sex peptide target neurons that express the SP receptor and are underlying these responses. Identification of these neurons will eventually lead to the identification of the underlying neuronal circuitry.
The Soller lab has addressed this important question already several years ago (Haussmann et al. 2013), using relevant GAL4-lines and membrane-tethered SP. The results already showed that the action of SP on receptivity and oviposition is mediated by different neuronal subsets and hence can be separated. The GAL4-lines used at that time were, however, broad, and the individual identity of the relevant neurons remained unclear.
In the present paper, Nallasivan and colleagues carried this analysis a significant step further, using new intersectional approaches and transsynaptic tracing.
Strength:
The intersectional approach is appropriate and state-of-the art. The analysis is a very comprehensive tour-de-force and experiments are carefully performed to a high standard. The authors also produced a useful new transgenic line (UAS-FRTstopFRT mSP). The finding that neurons in the brain (head) mediate the SP effect on receptivity, while neurons in the abdomen and thorax (ventral nerve cord or peripheral neurons) mediate the SP effect on oviposition, is a significant step forward in the endavour to identify the underlying neuronal networks and hence a mechanistic understanding of SP action. The analysis identifies a small set of neurons underlying SP responses. Some are part of the post-mating circuitry aind influence receptivity, while other are likely involved in higher order sensory processing. Though these results are not entirely unexpected, they are novel and represent a significant step forwards as the analysis is at a much higher resolution as previous work.
Weakness:
Though the analysis is at a much higher resolution as previous work on SP targets, it does not yet reach the resolution of single neuronal cell types. The last paragraph in the discussion rightfully speculates about the neurochemical identity of some of the intersection neurons (e.g. dopaminergic P1 neurons, NPF neurons). These suggested identities could have been confirmed by straight-forward immunostainings agains NPF or TH, for which antisera are available. Moreover, specific GAL4 lines for NPF or P1 or at least TH neurons are available which could be used to express mSP to test whether SP activation of those neurons is sufficient to trigger the SP effect. Moreover, the conclusion that SP target neurons operate as key integrators of sensory information for decision of behavioural outputs needs further experimental confirmation.
Reviewer #3 (Public review):
Summary:
This paper reports new findings regarding neuronal circuitries responsible for female post-mating responses (PMRs) in Drosophila. The PMRs are induced by sex peptide (SP) transferred from males during mating. The authors sought to identify SP target neurons using a membrane-tethered SP (mSP) and a collection of GAL4 lines, each containing a fragment derived from the regulatory regions of the SPR, fru, and dsx genes involved in PMR. They identified several lines that induced PMR upon expression of mSP. Using split-GAL4 lines, they identified distinct SP-sensing neurons in the central brain and ventral nerve cord. Analyses of pre- and post-synaptic connection using retro- and trans-Tango placed SP target neurons at the interface of sensory processing interneurons that connect to two common post-synaptic processing neuronal populations in the brain. The authors proposed that SP interferes with the processing of sensory inputs from multiple modalities.
Strengths:
Besides the main results described in the summary above, the authors discovered the following:
(1) Reduction of receptivity and induction of egg-laying are separable by restricting the expression of membrane-tethered SP (mSP): head-specific expression of mSP induces reduction of receptivity only, whereas trunk-specific expression of mSP induces oviposition only. Also, they identified a GAL4 line (SPR12) that induced egg laying but did not reduce receptivity.
(2) Expression of mSP in the genital tract sensory neurons does not induce PMR. The authors identified three GAL4 drivers (SPR3, SPR 21, and fru9), which robustly expressed mSP in genital tract sensory neurons but did not induce PMRs. Also, SPR12 does not express in genital tract neurons but induces egg laying by expressing mSP.