Structural and biochemical studies indicate that AAA+ ATPase employ a general mechanism to translocate a variety of substrates, including extended polypeptides, hairpins, crosslinked chains, and chains conjugated to other molecules.
Cryo-EM reveals the regulation of RUVBL1 and RUVBL2 AAA-ATPases by DHX34, a helicase involved in nonsense-mediated mRNA decay (NMD), and suggests mechanisms for how RUVBL1 and RUVBL2 function in NMD.
A cryo-electron microscopy structure of a substrate-bound Vps4-Vta1 AAA ATPase reveals an asymmetric hexameric ring and suggests how nucleotide-induced changes in subunit interfaces translocate polypeptides into the central pore.
High resolution structures of the essential human AAA+ ATPase TorsinA and its disease mutant in complex with an activator reveal details of the interaction that will guide drug design and further functional characterization.
LAP1 adopts an AAA+ like fold that, while unable to bind nucleotide, can enhance ATPase activity in the neighboring TorsinA protomer in an unusual heterohexameric ring, via an arginine finger.
The human Origin Replication Complex is shaped as a shallow corkscrew in a classic AAA+ organization reminiscent of clamp loader complexes with highly controlled ATPase activity as exemplified by Meier-Gorlin syndrome mutations.
The endoplasmic reticulum E3 ubiquitin ligase Doa10 and the mitochondrial AAA-ATPase Msp1 govern targeting fidelity of outer mitochondrial tail-anchored proteins by controlling cytoplasmic concentration and extracting mistargeted and orphan species.
Msp1, a membrane-integral AAA ATPase at mitochondria and peroxisomes, selectively recognizes uncomplexed substrate molecules in vivo while avoiding substrates stabilized by binding partners.