62 results found
    1. Physics of Living Systems

    A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies

    Raphael Zahn et al.
    A homopolymer-sphere model is shown to accurately reproduce the interactions that underpin selective gating of macromolecular transport into and out of the cell nucleus.
    1. Structural Biology and Molecular Biophysics
    2. Cell Biology

    Scaffold nucleoporins Nup188 and Nup192 share structural and functional properties with nuclear transport receptors

    Kasper R Andersen et al.
    Components of the nuclear pore complex share structural and functional features with soluble nuclear transport receptors, which suggests that there may be an evolutionary relationship between these two types of protein.
    1. Cell Biology
    2. Microbiology and Infectious Disease

    Nuclear pore heterogeneity influences HIV-1 infection and the antiviral activity of MX2

    Melissa Kane et al.
    Comprehensive investigation reveals the variability and importance of the nuclear pore complex in HIV-1 infection and the activity of the antiretroviral protein, MX2.
    1. Structural Biology and Molecular Biophysics
    2. Cell Biology

    The molecular mechanism of nuclear transport revealed by atomic-scale measurements

    Loren E Hough et al.
    NMR spectroscopy has been used to explain a central unresolved issue of nuclear transport, namely how it can be both fast and specific.
    1. Cell Biology
    2. Chromosomes and Gene Expression

    Chromatin-prebound Crm1 recruits Nup98-HoxA9 fusion to induce aberrant expression of Hox cluster genes

    Masahiro Oka et al.
    Nup98-HoxA9 is recruited to Hox gene cluster regions together with the chromosomally pre-bound nuclear export factor Crm1, which induces aberrant expression of several Hox genes and affecting the differentiation of embryonic stem cells.
    1. Biochemistry and Chemical Biology
    2. Cell Biology

    Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity

    Hermann Broder Schmidt, Dirk Görlich
    How nuclear pore complexes establish their permeability barrier has been a long-standing question; now, this process can be reconstituted by a surprisingly simple and rapid self-assembly of Nup98 FG domains into selective FG phases.
    1. Cell Biology
    2. Chromosomes and Gene Expression

    Chromatin-bound CRM1 recruits SET-Nup214 and NPM1c onto HOX clusters causing aberrant HOX expression in leukemia cells

    Masahiro Oka et al.
    A key molecule that connects leukemogenic proteins to aberrant HOX gene regulation turned out to be a nuclear export factor, CRM1.
    1. Structural Biology and Molecular Biophysics
    2. Cell Biology

    Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner

    Alan R Lowe et al.
    The Ran GTPase plays a role in defining the physical properties of the nuclear pore complex transport channel by remodeling the binding interactions of importin-β with the nucleoporin Nup153 at the nuclear face of the pore.
    1. Cell Biology

    Age-dependent deterioration of nuclear pore assembly in mitotic cells decreases transport dynamics

    Irina L Rempel et al.
    In replicative ageing yeast cells, an age-dependent impediment in proper assembly of nuclear pore complexes is associated with altered nuclear transport.
    1. Cell Biology

    Actin assembly ruptures the nuclear envelope by prying the lamina away from nuclear pores and nuclear membranes in starfish oocytes

    Natalia Wesolowska et al.
    Combined light and electron microscopy reveals a new function for Arp2/3-mediated actin assembly in nuclear envelope rupture, which leads to a separation of nuclear membranes and pores from the lamina.

Refine your results by:

Type
Research categories