26 results found
    1. Neuroscience

    FMRP has a cell-type-specific role in CA1 pyramidal neurons to regulate autism-related transcripts and circadian memory

    Kirsty Sawicka et al.
    Identifying FMRP-bound mRNAs in hippocampal CA1 pyramidal neurons reveals cell-type specific regulation of autism-candidate and circadian mRNAs and FMRP-mediated control of memory across the circadian cycle.
    1. Developmental Biology
    2. Genetics and Genomics

    A Myt1 family transcription factor defines neuronal fate by repressing non-neuronal genes

    Joo Lee et al.
    First comprehensive genetic analysis of a Myt1 family protein reveals that neurogenesis requires direct repression of non-neuronal identities by the Myt1 family protein through MuvB co-repressor complex.
    1. Evolutionary Biology
    2. Genetics and Genomics

    Ancient origins of arthropod moulting pathway components

    André Luiz de Oliveira et al.
    Evolutionary reconstruction of the ecdysis pathway shows that its major elements are present in the majority of metazoans, providing evidence that they originated much earlier than currently assumed.
    1. Evolutionary Biology
    2. Neuroscience

    Glutamate Receptors: Family matters

    Mark L Mayer, Timothy Jegla
    Genome sequence data from a range of animal species are raising questions about the origins of glutamate receptors.
    Insight
    Available as:
    • HTML
    • PDF
    1. Evolutionary Biology
    2. Neuroscience

    Metazoan evolution of glutamate receptors reveals unreported phylogenetic groups and divergent lineage-specific events

    David Ramos-Vicente et al.
    The animal phylogeny of glutamate receptors indicates that vertebrate types do not account for all receptor classes originated during evolution, neither are they the pinnacle of a linear evolutive process.
    1. Evolutionary Biology

    Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias

    Christopher E Laumer et al.
    Protein coding genes strongly support a sister group relationship between Placozoa and Cnidaria to the exclusion of Bilateria, contradicting previous phylogenies, which have likely been misled by pervasive compositional heterogeneity.
    1. Developmental Biology
    2. Evolutionary Biology

    CRISPR knockouts reveal an endogenous role for ancient neuropeptides in regulating developmental timing in a sea anemone

    Nagayasu Nakanishi, Mark Q Martindale
    Analysis of the endogenous function of deeply conserved neuropeptides in sea anemones sheds light on a primitive role of nervous systems in modulating developmental timing.
    1. Developmental Biology
    2. Evolutionary Biology

    Germ layer-specific regulation of cell polarity and adhesion gives insight into the evolution of mesoderm

    Miguel Salinas-Saavedra et al.
    The expression of 'bilaterian-mesodermal’ genes changes the epithelial properties of the endomesoderm during the embryogenesis of the cnidarian Nematostella vectensis.
    1. Evolutionary Biology

    The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments

    Daniel B Mills et al.
    Sponges and ctenophores lack hypoxia-inducible factors, suggesting that the metazoan last common ancestor could have lived aerobically under severe hypoxia and did not need to regulate its transcription in response to oxygen availability.
    1. Evolutionary Biology

    Evolution: Oxygen and early animals

    Kalle T Rytkönen
    The biology of sponges provides clues about how early animals may have dealt with low levels of oxygen.
    Insight
    Available as:
    • HTML
    • PDF

Refine your results by:

Type
Research categories