519 results found
    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression

    SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis

    Larissa Wilhelm et al.
    The Smc–ScpAB complex-a prokaryotic ancestor of cohesin, condensin and Smc5/6-loads onto the bacterial chromosome by employing ATP hydrolysis to capture DNA fibers within its tripartite ring.
    1. Chromosomes and Gene Expression

    MukB ATPases are regulated independently by the N- and C-terminal domains of MukF kleisin

    Katarzyna Zawadzka et al.
    In Escherichia coli structural maintenance of chromosomes (SMC) complex, MukBEF, a dimeric MukF kleisin binds and activates MukB SMC ATPases through two independent interfaces provided by distinct MukF N- and C-terminal domains.
    1. Cell Biology
    2. Microbiology and Infectious Disease

    Suppressor of cytokine signaling (SOCS)5 ameliorates influenza infection via inhibition of EGFR signaling

    Lukasz Kedzierski et al.
    The intracellular SOCS5 protein has a unique and key role in restraining influenza A infection by regulating epidermal growth factor receptor signaling in airway epithelial cells.
    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease

    Recombinational branch migration by the RadA/Sms paralog of RecA in Escherichia coli

    Deani L Cooper, Susan T Lovett
    The role of the bacterial protein RadA in homologous recombination – a DNA repair pathway vital to all cells – is defined.
    1. Physics of Living Systems
    2. Developmental Biology

    Distinct mechanisms regulating mechanical force-induced Ca2+ signals at the plasma membrane and the ER in human MSCs

    Tae-Jin Kim et al.
    Deep penetration and transmission of mechanical force to regulate ER functions depends on not only the passive cytoskeletal support, but also the active actomyosin contractility, which is dispensable for mechanotransduction at the plasma membrane.
    1. Chromosomes and Gene Expression
    2. Genetics and Genomics

    Communication between distinct subunit interfaces of the cohesin complex promotes its topological entrapment of DNA

    Vincent Guacci et al.
    The interface formed where Smc3p and Mcd1p bind each other regulates cohesin DNA binding and cohesion by a mechanism independently from its putative role as a DNA exit gate.
    1. Chromosomes and Gene Expression

    Condensin controls cellular RNA levels through the accurate segregation of chromosomes instead of directly regulating transcription

    Clémence Hocquet et al.
    Contrary to the generally accepted model, condensin maintains proper gene expression by promoting the accurate segregation of chromosomes and the partitioning of the RNA-exosome throughout mitosis, instead of directly regulating transcription.
    1. Chromosomes and Gene Expression

    Scc2 counteracts a Wapl-independent mechanism that releases cohesin from chromosomes during G1

    Madhusudhan Srinivasan et al.
    In G1 cells, Scc2 loads and maintains cohesin on chromosomes by counteracting a Wapl-independent releasing activity, which is neutralized in S phase by CDK1.
    1. Immunology and Inflammation

    Migratory and adhesive cues controlling innate-like lymphocyte surveillance of the pathogen-exposed surface of the lymph node

    Yang Zhang et al.
    A group of innate-like lymphocytes surveys the lymph node subcapsular sinus for bacterial and fungal invaders using a novel combination of chemoattractant and adhesion molecules.
    1. Neuroscience

    Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD+ in axon regeneration

    Kyung Won Kim et al.
    A function-based genetic screen using the Caenorhabditis elegans axotomy model identifies new regulators and an inhibitory role for NAD+ in axon regeneration, expanding the understanding of axon injury responses and regeneration.

Refine your results by:

Type
Research categories