13 results found
    1. Developmental Biology

    Chloride channels regulate differentiation and barrier functions of the mammalian airway

    Mu He et al.
    The chloride channel Ano1/Tmem16a plays an essential and non-redundant role in the developing airway by inhibiting mucus cell hyperplasia and promoting proper immune function of the airway mucosal barrier.
    1. Neuroscience
    2. Structural Biology and Molecular Biophysics

    Dynamic change of electrostatic field in TMEM16F permeation pathway shifts its ion selectivity

    Wenlei Ye et al.
    TMEM16F shifts its ion selectivity in response to change of intracellular Ca2+, membrane potential and ionic strength.
    1. Neuroscience

    Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD+ in axon regeneration

    Kyung Won Kim et al.
    A function-based genetic screen using the Caenorhabditis elegans axotomy model identifies new regulators and an inhibitory role for NAD+ in axon regeneration, expanding the understanding of axon injury responses and regeneration.
    1. Structural Biology and Molecular Biophysics

    Calcium-dependent electrostatic control of anion access to the pore of the calcium-activated chloride channel TMEM16A

    Andy KM Lam, Raimund Dutzler
    Ion conduction in the calcium-activated chloride channel TMEM16A is directly regulated by calcium, which binds to a site close to the pore thereby shaping the electrostatics at its intracellular entrance.
    1. Biochemistry and Chemical Biology

    Gq activity- and β-arrestin-1 scaffolding-mediated ADGRG2/CFTR coupling are required for male fertility

    Dao-Lai Zhang et al.
    ADGRG2, an orphan GPCR, when coupled to CFTR via a regional Gq signaling on the apical membrane, acts to regulate efferent duct fluid reabsorption making it essential for male fertility.
    1. Neuroscience

    Small conductance Ca2+-activated K+ channels induce the firing pause periods during the activation of Drosophila nociceptive neurons

    Koun Onodera et al.
    Drosophila nociceptive neurons convert high-intensity stimuli into characteristic fluctuations of firing rates, quiescent periods of which are regulated by hyperpolarization through small conductance Ca2+-activated K+ channels.
    1. Structural Biology and Molecular Biophysics
    2. Computational and Systems Biology

    Lipids and ions traverse the membrane by the same physical pathway in the nhTMEM16 scramblase

    Tao Jiang et al.
    A concerted approach employing equilibrium and biased molecular simulations, electrophysiology, mutagenesis, and functional assays reveals, in atomic details, the mechanism and pathway for transport of phospholipids and ions by a lipid scramblase.
    1. Structural Biology and Molecular Biophysics

    Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A

    Cristina Paulino et al.
    Single-particle cryo-EM and electrophysiology studies of the chloride channel TMEM16A reveals the structural basis for anion conduction and uncover its relationship to lipid scramblases of the same family.
    1. Structural Biology and Molecular Biophysics

    Ion Channels: Poring over furrows

    Skylar ID Fisher, H Criss Hartzell
    Cryo-electron microscopy reveals the structure of a chloride channel that is closely related to a protein that transports lipids.
    Insight
    Available as:
    • HTML
    • PDF
    1. Neuroscience

    The Ionotropic Receptors IR21a and IR25a mediate cool sensing in Drosophila

    Lina Ni et al.
    Two members of a widely studied family of chemoreceptors, the "orphan" chemoreceptor IR21a and its putative co-receptor IR25a, act together to mediate cool sensation in fruit fly larvae.

Refine your results by:

Type
Research categories