411 results found
    1. Developmental Biology

    Hox-dependent coordination of mouse cardiac progenitor cell patterning and differentiation

    Sonia Stefanovic et al.
    Discovering that Hoxb1 acts as a repressor of cardiac differentiation on second heart field progenitor cells helps us to understand the etiology of congenital heart defects such as atrioventricular septal defects.
    1. Developmental Biology

    Calcium handling precedes cardiac differentiation to initiate the first heartbeat

    Richard CV Tyser et al.
    High-resolution live imaging reveals how and when the mouse heart first starts to beat during development and how the onset of beating impacts on heart muscle cell maturation and heart formation.
    1. Developmental Biology

    Revised roles of ISL1 in a hES cell-based model of human heart chamber specification

    Roberto Quaranta et al.
    Loss and gain-of-function investigation uncovers a regulatory network controlling human heart chamber specification in which the cardiac precursor gene ISL1 accelerates ventricular induction and antagonizes retinoic acid-driven atrial commitment.
    1. Developmental Biology

    Live imaging of heart tube development in mouse reveals alternating phases of cardiac differentiation and morphogenesis

    Kenzo Ivanovitch et al.
    Tissue-level coordination of cardiac progenitor cells in the early mouse embryo produces a temporal compartmentalization of differentiation and morphogenesis essential for heart tube formation.
    1. Developmental Biology

    Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis

    Haruko Nakano et al.
    During cardiogenesis, the major role of glucose is not the catabolic extraction of energy but the anabolic biosynthesis of nucleotides.
    1. Cell Biology
    2. Developmental Biology

    Reduced matrix rigidity promotes neonatal cardiomyocyte dedifferentiation, proliferation and clonal expansion

    Yfat Yahalom-Ronen et al.
    Compliant matrix provides a permissive micoenvironment for cardiomyocyte dedifferentiation, cell division and expansion, and thus may open a new avenue towards cardiac regeneration.
    1. Developmental Biology

    The vascular niche controls Drosophila hematopoiesis via fibroblast growth factor signaling

    Manon Destalminil-Letourneau et al.
    Two niches contribute to the control of Drosophila blood cell homeostasis through their differential regulation of hematopoietic progenitors.
    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine

    GATA6 mutations in hiPSCs inform mechanisms for maldevelopment of the heart, pancreas, and diaphragm

    Arun Sharma et al.
    Analyses of human stem cells with distinct GATA6 mutations revealed a spectrum of molecular responses that drive isolated congenital heart disease or the co-occurrence of pancreas and diaphragm malformations.
    1. Developmental Biology

    Hippo signaling determines the number of venous pole cells that originate from the anterior lateral plate mesoderm in zebrafish

    Hajime Fukui et al.
    The Hippo signaling restricts the number of SHF cardiomyocytes in the venous pole by negatively regulating Bmp-Smad signaling in the cells of lateral plate mesoderm.
    1. Cell Biology
    2. Developmental Biology

    Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death

    Fabrice Bouilloux et al.
    The transcription factor Meis1 is a dedicated maintenance factor for sympathetic neurons and controls the expression of key genes involved in endosome trafficking.

Refine your results by:

Type
Research categories