A precise sequence of left-right asymmetries, combined with mechanical constraints, is sufficient to drive the looped morphogenesis of the embryonic heart tube, with potential impact for congenital heart defects.
Customization of ion channel gating enhances homeostatic regulation through automatic detection and correction of abnormal physiological changes, as illustrated by self-restoration of excitation rhythm in cardiac arrhythmias.
Integrative modeling of results from chemical cross-linking, electron microscopy, and homology modeling yield a three-dimensional model of the entire Mediator complex in yeast.
Modeling and biophysics show that the unstructured acidic tail of the Sm protein Hfq mimics nucleic acid to auto inhibit its chaperone activity, preventing Hfq from being sequestered by inauthentic substrates and providing insight into the evolution of Hfq's chaperone function among bacterial genera.
Autoantibodies from myasthenia gravis patients bind a common core region on the nicotinic acetylcholine receptor through a largely conserved mechanism.
Morphologic, molecular, biomechanical and computational analyses show that the specialized extracellular matrix architecture of the umbilical artery contributes to its rapid closure at birth and regulates smooth muscle cell differentiation.
A new biophysical model enables the reconciliation of ultrastructural and tissue level measurements on parameters affecting intercellular communication, and provides novel functional insight into experimental findings.