6 results found
    1. Cell Biology

    Ret function in muscle stem cells points to tyrosine kinase inhibitor therapy for facioscapulohumeral muscular dystrophy

    Louise A Moyle et al.
    Rescue of DUX4-induced muscle pathology by the RET inhibitor Sunitinib reveals the therapeutic potential for treatment of Facioscapulohumeral muscular dystrophy using tyrosine kinase inhibitors.
    1. Genetics and Genomics

    Quantitative proteomics reveals key roles for post-transcriptional gene regulation in the molecular pathology of facioscapulohumeral muscular dystrophy

    Sujatha Jagannathan et al.
    The myopathic transcription factor DUX4 induces discordant dysregulation of transcript and protein levels, demonstrating a key role for post-transcriptional gene regulation in facioscapulohumeral muscular dystrophy.
    1. Genetics and Genomics

    A feedback loop between nonsense-mediated decay and the retrogene DUX4 in facioscapulohumeral muscular dystrophy

    Qing Feng et al.
    Expression of the disease gene DUX4 inhibits RNA quality control in skeletal muscle, thereby stabilizing thousands of aberrant RNAs, including its own transcript.
    1. Chromosomes and Gene Expression

    NuRD and CAF-1-mediated silencing of the D4Z4 array is modulated by DUX4-induced MBD3L proteins

    Amy E Campbell et al.
    CRISPR/Cas9 engineered locus-specific proteomics leads to the identification of NuRD, CAF-1, and MBD3L2 as regulators of the early embryonic transcription factor DUX4.
    1. Physics of Living Systems

    Downsizing the molecular spring of the giant protein titin reveals that skeletal muscle titin determines passive stiffness and drives longitudinal hypertrophy

    Ambjorn Brynnel et al.
    Genetically altering the size of the molecular spring element in the giant protein titin established that titin determines the stiffness of skeletal muscle and the number of sarcomeres in series.
    1. Cell Biology

    ATR expands embryonic stem cell fate potential in response to replication stress

    Sina Atashpaz et al.
    ATR protects stem cell genomes by activating a transcriptional response mediated by totipotency genes, conferring trophoblast differentiation potential, the derepression of which in somatic cells might favour cancer features emergence.

Refine your results by:

Type
Research categories