147 results found
    1. Developmental Biology

    Folded gastrulation and T48 drive the evolution of coordinated mesoderm internalization in flies

    Silvia Urbansky et al.
    Functional recapitulation of a likely evolutionary gain in gene expression shows that two genes are sufficient to switch mesoderm cell internalization from stochastic cell ingression to coordinated epithelial invagination.
    1. Developmental Biology

    Local cell interactions and self-amplifying individual cell ingression drive amniote gastrulation

    Octavian Voiculescu et al.
    A combination of two local cell interactions, intercalation and ingression amplified by a community-effect, is sufficient to explain the global movements of amniote gastrulation.
    1. Developmental Biology

    Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling

    Megan L Norris et al.
    Elucidation of direct and indirect roles of GPCR signaling during gastrulation.
    1. Stem Cells and Regenerative Medicine

    Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning

    Sophie M Morgani et al.
    Micropatterned differentiation of mouse pluripotent stem cells gives rise to regionally distinct cell types arising in embryos at gastrulation.
    1. Cell Biology
    2. Developmental Biology

    Ingression-type cell migration drives vegetal endoderm internalisation in the Xenopus gastrula

    Jason WH Wen, Rudolf Winklbauer
    The cellular behaviours that underlie the internalization of the multilayered endoderm anlage in Xenopus laevis link the ancestral mode of vertebrate gastrulation to common, epithelial-based mechanisms of gastrulation in non-vertebrate animals.
    1. Developmental Biology

    Pitx2c orchestrates embryonic axis extension via mesendodermal cell migration

    Michelle M Collins et al.
    Expression of Pitx2c at the onset of gastrulation drives convergence and extension movements in the zebrafish embryo by promoting downstream pathways affecting chemokine signaling, integrin-ECM interactions, and planar cell polarity components.
    1. Developmental Biology

    Early patterning and specification of cardiac progenitors in gastrulating mesoderm

    W Patrick Devine et al.
    Multipotent cardiac precursors within a population of mesoderm are rapidly fated to specific anatomic locations in the developing mouse heart.
    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics

    Gastrulation: May the force be with you

    Shinuo Weng, John B Wallingford
    Understanding the coordination of the forces generated in embryos by two processes, convergent extension and convergent thickening, is key to understanding how a hollow sphere of cells develops into an elongated embryo.
    Insight
    Available as:
    • HTML
    • PDF
    1. Developmental Biology

    The transcription factor Pitx2 positions the embryonic axis and regulates twinning

    Angela Torlopp et al.
    In higher vertebrates, the position of the embryonic axis (the location at which gastrulation starts) is determined by the transcription factor Pitx2, which suggests that the mechanisms of this process, and hence those that regulate twinning, are related to those that set up the left–right axis.
    1. Biochemistry and Chemical Biology
    2. Developmental Biology

    The major β-catenin/E-cadherin junctional binding site is a primary molecular mechano-transductor of differentiation in vivo

    Jens-Christian Röper et al.
    The primary molecular mechanosensor involved in a physiological process of mechanically induced cell fate differentiation is revealed here for the first time in vivo, highly sensitive and potentially shared by all metazoan epithelia.

Refine your results by:

Type
Research categories