Browse the search results

Page 2 of 43
    1. Developmental Biology
    2. Neuroscience

    Genetic specification of left–right asymmetry in the diaphragm muscles and their motor innervation

    Camille Charoy et al.
    Analysis of embryonic mouse diaphragm reveals muscle and nerve left–right asymmetries set by a Nodal-dependent genetic cascade, which imprints different molecular signatures to left and right motoneurons that shape their innervation pattern.
    1. Genetics and Genomics
    2. Neuroscience

    Variation in olfactory neuron repertoires is genetically controlled and environmentally modulated

    Ximena Ibarra-Soria et al.
    The neuronal composition of a mouse’s nose is individually unique due to a combination of olfactory experience and genetic variation local to olfactory receptor genes.
    1. Plant Biology

    A chloroplast retrograde signal, 3’-phosphoadenosine 5’-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination

    Wannarat Pornsiriwong et al.
    Molecular signals from chloroplasts can synergistically interact with the plant hormone, abscisic acid (ABA), to regulate non-canonical signaling pathways mediating fundamental cellular processes including stomatal closure, seed dormancy and germination.
    1. Developmental Biology
    2. Genetics and Genomics

    The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion

    Damian Kao et al.
    The first malacostracan genome sequence will establish the genetically tractable Parhyale hawaiensis as a model organism in this key animal group.
    1. Chromosomes and Gene Expression

    Distinct modes of SMAD2 chromatin binding and remodeling shape the transcriptional response to NODAL/Activin signaling

    Davide M Coda et al.
    NODAL/Activin-induced SMAD2 binding directly drives remodeling of both open and closed chromatin and does not directly correlate with temporal patterns of gene expression upon prolonged signaling.
    1. Neuroscience

    MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders

    Adam J Harrington et al.
    Mice that lack the autism- and schizophrenia-linked gene MEF2C in cortical neurons have an imbalance of excitatory and inhibitory synapses, and impaired social and cognitive abilities.
    1. Immunology and Inflammation
    2. Physics of Living Systems

    Role of framework mutations and antibody flexibility in the evolution of broadly neutralizing antibodies

    Victor Ovchinnikov et al.
    Computer simulations of the evolution of broadly neutralizing antibodies against HIV suggest that non-traditional pathways involving framework mutations which lead initially to increased antibody flexibility do occur, but can be avoided by appropriate vaccine design.
    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology

    Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver

    Bryan J Matthews, David J Waxman
    Certain types of 3D chromatin loops are easy to predict from existing or easily obtainable 2D information, which benefits gene expression studies in tissues/cells/organisms without extensive pre-existing 3D information.
    1. Chromosomes and Gene Expression

    Nonsense mRNA suppression via nonstop decay

    Joshua A Arribere, Andrew Z Fire
    Nonstop mRNA decay degrades mRNAs with a premature stop codon after such mRNAs are targeted by the nonsense-mediated decay machinery.
    1. Chromosomes and Gene Expression

    The C. elegans neural editome reveals an ADAR target mRNA required for proper chemotaxis

    Sarah N Deffit et al.
    Identification of tissue-specific RNA editing using a robust, publicly-available platform (SAILOR) reveals noncoding A-to-I editing events required for proper gene expression and neurological function, significantly advancing the understanding of how ADARs function in neural cells.