SOM+ GABAergic neuronal signaling and inhibitory transmission in the central lateral amygdala is regulated by TMEM16B, which is also involved in fear and anxiety-like behaviors.
A sexually dimorphic circuit node controls a persistent, internal state that promotes fighting and mating in Drosophila, revealing parallels with mammalian systems suggestive of a conserved circuit "motif" controlling social behaviors.
A cross-fostered population of mice reveals loci on offspring chromosomes 5 and 7 that modify the behaviour of their mothers, along with evidence of coadaptation between offspring and parental traits.
A combination of genetic, anatomical and physiological techniques has revealed that the lateral horn, a region of the brain involved in olfaction in flies, has many more types of neurons than expected.
The generation and systematic characterisation of driver lines labelling a large number of neurons in the Drosophila innate olfactory processing centre bridges electron microscopy neuronal reconstructions, circuits and behaviour.
Oxytocin in the amygdala suppresses freezing of mothers when exposed to a threat in the presence of their offspring, allowing for pup protection and transmission of information about danger from mothers to pups.
A quantitative video tracking analysis reveals that to gain the nutrients they need, flies change their decisions to exploit foods with different nutrient contents and explore the environment according to their internal amino acid and reproductive states.
An area of visual-motor cortex called the lateral intraparietal area encodes eye position signals that support visually-guided behaviors and image stabilization.
Disrupting the right temporo-parietal junction did not change the general motivation to give or adapt behavior to social reputation cues, but specifically reduced the impact of moral-material conflict.