24 results found
    1. Biophysics and Structural Biology

    Structure-based membrane dome mechanism for Piezo mechanosensitivity

    Yusong R Guo, Roderick MacKinnon
    Mechanosensitive Piezo channel induces local membrane curvature to mediate mechanical gating.
    1. Developmental Biology and Stem Cells

    Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis

    Stefan Donat et al.
    The cerebral cavernous malformations complex is controlled in a blood-flow sensitive manner and affects cardiac valve leaflet morphogenesis by regulating the expression of Klf2 and of Notch signalling activity.
    1. Biophysics and Structural Biology
    2. Neuroscience

    Piezo Ion Channels: Portraits of a pressure sensor

    Alexander T Chesler, Marcin Szczot
    Near atomic-resolution structures have provided insights into the mechanisms by which the Piezo1 ion channel senses and responds to mechanical stimuli.
    Insight
    Available as:
    • HTML
    • PDF
    1. Biophysics and Structural Biology
    2. Developmental Biology and Stem Cells

    Distinct mechanisms regulating mechanical force-induced Ca2+ signals at the plasma membrane and the ER in human MSCs

    Tae-Jin Kim et al.
    Deep penetration and transmission of mechanical force to regulate ER functions depends on not only the passive cytoskeletal support, but also the active actomyosin contractility, which is dispensable for mechanotransduction at the plasma membrane.
    1. Neuroscience

    Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons

    Nicole Scholz et al.
    Metabotropic mechanosensing occurs through an adhesion-type G protein-coupled receptor.
    1. Neuroscience

    Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt)

    Timothy Erickson et al.
    A zebrafish model for a particular form of human deafness (DFNB63) changes our view of this disease by revealing a defect in the localization of Transmembrane channel-like proteins that are essential for mechanotransduction in sensory cells.
    1. Cell Biology
    2. Neuroscience

    A synaptic F-actin network controls otoferlin-dependent exocytosis in auditory inner hair cells

    Philippe FY Vincent et al.
    A synaptic F-actin network tightly controls the flow of synaptic vesicles during exocytosis at the inner hair cell ribbons.
    1. Neuroscience

    Acetylated tubulin is essential for touch sensation in mice

    Shane J Morley et al.
    Increased stiffness of sensory neurons in the absence of microtubule acetylation renders mice profoundly insensitive to touch and pain.
    1. Neuroscience

    Dopamine signaling tunes spatial pattern selectivity in C. elegans

    Bicheng Han et al.
    Natural variations in touch-dependent dopamine signaling tune the perception of spatial patterns in C. elegans.
    1. Cell Biology
    2. Neuroscience

    Mechanotransduction current is essential for stability of the transducing stereocilia in mammalian auditory hair cells

    A Catalina Vélez-Ortega et al.
    The remarkable lifelong stability of mechanotransducing stereocilia of the inner ear hair cells depends on the activity of the transduction ion channels located at the tips of these mechanosensory projections.

Refine your results by:

Type
Research categories