31 results found
    1. Structural Biology and Molecular Biophysics

    Piezo’s membrane footprint and its contribution to mechanosensitivity

    Christoph A Haselwandter, Roderick MacKinnon
    Membrane mechanics predict that the ion channel Piezo recruits the surrounding membrane to amplify its sensitivity to changes in membrane tension, with greatest sensitivity in the low-tension regime.
    1. Structural Biology and Molecular Biophysics

    Structure-based membrane dome mechanism for Piezo mechanosensitivity

    Yusong R Guo, Roderick MacKinnon
    Mechanosensitive Piezo channel induces local membrane curvature to mediate mechanical gating.
    1. Developmental Biology

    Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis

    Stefan Donat et al.
    The cerebral cavernous malformations complex is controlled in a blood-flow sensitive manner and affects cardiac valve leaflet morphogenesis by regulating the expression of Klf2 and of Notch signalling activity.
    1. Structural Biology and Molecular Biophysics
    2. Neuroscience

    Piezo Ion Channels: Portraits of a pressure sensor

    Alexander T Chesler, Marcin Szczot
    Near atomic-resolution structures have provided insights into the mechanisms by which the Piezo1 ion channel senses and responds to mechanical stimuli.
    Insight
    Available as:
    • HTML
    • PDF
    1. Structural Biology and Molecular Biophysics

    A hydrophobic gate in the inner pore helix is the major determinant of inactivation in mechanosensitive Piezo channels

    Wang Zheng et al.
    A functionally conserved inactivation gate in the inner helix of Piezo channels controls the majority of the inactivation process via a hydrophobic mechanism.
    1. Cell Biology

    Myotubularin related protein-2 and its phospholipid substrate PIP2 control Piezo2-mediated mechanotransduction in peripheral sensory neurons

    Pratibha Narayanan et al.
    Local Mtmr2 activity and PI(3,5)P2 abundance dynamically control Piezo2-dependent mechanotransduction in peripheral sensory neurons.
    1. Physics of Living Systems
    2. Developmental Biology

    Distinct mechanisms regulating mechanical force-induced Ca2+ signals at the plasma membrane and the ER in human MSCs

    Tae-Jin Kim et al.
    Deep penetration and transmission of mechanical force to regulate ER functions depends on not only the passive cytoskeletal support, but also the active actomyosin contractility, which is dispensable for mechanotransduction at the plasma membrane.
    1. Neuroscience

    Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons

    Nicole Scholz et al.
    Metabotropic mechanosensing occurs through an adhesion-type G protein-coupled receptor.
    1. Neuroscience

    Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt)

    Timothy Erickson et al.
    A zebrafish model for a particular form of human deafness (DFNB63) changes our view of this disease by revealing a defect in the localization of Transmembrane channel-like proteins that are essential for mechanotransduction in sensory cells.
    1. Cell Biology
    2. Neuroscience

    A synaptic F-actin network controls otoferlin-dependent exocytosis in auditory inner hair cells

    Philippe FY Vincent et al.
    A synaptic F-actin network tightly controls the flow of synaptic vesicles during exocytosis at the inner hair cell ribbons.

Refine your results by:

Type
Research categories