42 results found
    1. Structural Biology and Molecular Biophysics

    Piezo’s membrane footprint and its contribution to mechanosensitivity

    Christoph A Haselwandter, Roderick MacKinnon
    Membrane mechanics predict that the ion channel Piezo recruits the surrounding membrane to amplify its sensitivity to changes in membrane tension, with greatest sensitivity in the low-tension regime.
    1. Structural Biology and Molecular Biophysics

    Structure-based membrane dome mechanism for Piezo mechanosensitivity

    Yusong R Guo, Roderick MacKinnon
    Mechanosensitive Piezo channel induces local membrane curvature to mediate mechanical gating.
    1. Developmental Biology

    Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis

    Stefan Donat et al.
    The cerebral cavernous malformations complex is controlled in a blood-flow sensitive manner and affects cardiac valve leaflet morphogenesis by regulating the expression of Klf2 and of Notch signalling activity.
    1. Cell Biology

    The mechanosensitive Piezo1 channel is required for bone formation

    Weijia Sun et al.
    Piezo1 functions as a key mechanotransducer for conferring mechanosensitivity to osteoblasts and determining mechanical-load-dependent bone formation, and represents a novel therapeutic target for treating osteoporosis or unloading-induced severe bone loss.
    1. Structural Biology and Molecular Biophysics
    2. Neuroscience

    Piezo Ion Channels: Portraits of a pressure sensor

    Alexander T Chesler, Marcin Szczot
    Near atomic-resolution structures have provided insights into the mechanisms by which the Piezo1 ion channel senses and responds to mechanical stimuli.
    Insight
    Available as:
    • HTML
    • PDF
    1. Structural Biology and Molecular Biophysics

    A hydrophobic gate in the inner pore helix is the major determinant of inactivation in mechanosensitive Piezo channels

    Wang Zheng et al.
    A functionally conserved inactivation gate in the inner helix of Piezo channels controls the majority of the inactivation process via a hydrophobic mechanism.
    1. Neuroscience

    Distinct roles for innexin gap junctions and hemichannels in mechanosensation

    Denise S Walker, William R Schafer
    The innexin protein UNC-7, a homologue of vertebrate pannexins, plays a specific, gap junction-independent role in C. elegans mechanosensation.
    1. Neuroscience
    2. Physics of Living Systems

    Stiffness and tension gradients of the hair cell’s tip-link complex in the mammalian cochlea

    Mélanie Tobin et al.
    The tip-link complex of the hair cell is mechanically tuned along the tonotopic axis of the cochlea.
    1. Cell Biology

    Myotubularin related protein-2 and its phospholipid substrate PIP2 control Piezo2-mediated mechanotransduction in peripheral sensory neurons

    Pratibha Narayanan et al.
    Local Mtmr2 activity and PI(3,5)P2 abundance dynamically control Piezo2-dependent mechanotransduction in peripheral sensory neurons.
    1. Structural Biology and Molecular Biophysics

    Molecular basis of force-from-lipids gating in the mechanosensitive channel MscS

    Bharat Reddy et al.
    The structure of the mechanosensitive channel MscS embedded in a lipid bilayer redefines the nature, location and importance of lipid–protein interactions in the gating of mechanosensitive channels.

Refine your results by:

Type
Research categories