Browse the search results

Page 2 of 3
    1. Cell Biology
    2. Neuroscience

    Mechanotransduction current is essential for stability of the transducing stereocilia in mammalian auditory hair cells

    A Catalina Vélez-Ortega et al.
    The remarkable lifelong stability of mechanotransducing stereocilia of the inner ear hair cells depends on the activity of the transduction ion channels located at the tips of these mechanosensory projections.
    1. Immunology and Inflammation

    Different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity

    Michael Saitakis et al.
    Multiple functions of human T lymphocytes are shown to be potentiated within a wide range of physiological cell and tissue rigidities.
    1. Physics of Living Systems
    2. Neuroscience

    Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension

    Amanda H Lewis, Jörg Grandl
    Tension is the activating stimulus of Piezo1 mechanosensitive ion channels and resting membrane tension modulates overall channel sensitivity to mechanical stimulation.
    1. Neuroscience

    Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury

    Margarita Calvo et al.
    Type 1 potassium channels alter their composition and localisation to suppress hyper-excitability and neuropathic pain of injured sensory neurons.
    1. Cell Biology

    Discrete spatial organization of TGFβ receptors couples receptor multimerization and signaling to cellular tension

    Joanna P Rys et al.
    Cells control the spatial organization and signaling of TGFβ receptors at focal adhesions via a mechanically regulated mechanism to integrate biochemical and physical cues.
    1. Neuroscience

    The signaling lipid sphingosine 1-phosphate regulates mechanical pain

    Rose Z Hill et al.
    Constitutive sphingosine 1-phosphate signaling via the G-protein coupled receptor S1PR3 in mechanonociceptive somatosensory neurons is required for normal behavioral responses to noxious mechanical stimuli.
    1. Neuroscience

    Connectomics of the zebrafish's lateral-line neuromast reveals wiring and miswiring in a simple microcircuit

    Eliot Dow et al.
    The technique of serial blockface scanning electron microscopy, which permits the complete reconstruction of neuronal structures, allows comparison of the detailed "wiring diagrams" of lateral-line receptor organs in wild-type and mutant zebrafish.
    1. Cell Biology
    2. Developmental Biology

    Differentiation alters stem cell nuclear architecture, mechanics, and mechano-sensitivity

    Su-Jin Heo et al.
    Nuclear reorganization and stiffening accompanies mesenchymal stem cell differentiation, resulting in increased sensitivity to mechanical perturbation.
    1. Structural Biology and Molecular Biophysics
    2. Cell Biology

    Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes

    M Rocio Servin-Vences et al.
    The application of different types of mechanical stimuli to chondrocytes, either by stretching the membrane or deflecting cell-substrate contacts, reveals that there are distinct but overlapping mechanoelectrical transduction pathways in these cells.
    1. Neuroscience

    Membrane properties specialize mammalian inner hair cells for frequency or intensity encoding

    Stuart L Johnson
    Mammalian primary sensory inner hair cells play an active role in auditory information processing, such that they show a preference for either timing or intensity coding.