1,390 results found
    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine

    Cellular localization of the cell cycle inhibitor Cdkn1c controls growth arrest of adult skeletal muscle stem cells

    Despoina Mademtzoglou et al.
    Ablation of the Cdkn1c cell cycle inhibitor leads to defective muscle stem cell dynamics and myogenic potential, while progressive cytoplasmic to nuclear cellular localization of the Cdkn1c protein regulates growth arrest.
    1. Stem Cells and Regenerative Medicine

    Identification of a new stem cell population that generates Drosophila flight muscles

    Rajesh D Gunage et al.
    Large flight muscle of Drosophila are made by the regulated amplification of a newly identified stem cell population.
    1. Cell Biology
    2. Stem Cells and Regenerative Medicine

    The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38α MAP kinase and redox regulation of muscle regeneration

    Aurore L'honoré et al.
    Modulation of muscle stem cell redox state in culture both improves their amplification while maintaining a similar grafting potential as freshly isolated stem cells.
    1. Stem Cells and Regenerative Medicine

    Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration

    Wenxuan Liu et al.
    Building on previous work (Liu et al., 2015), it is shown that depletion or rescue of adult skeletal muscle stem cells is sufficient to induce or attenuate age-associated neuromuscular junction deterioration respectively.
    1. Cell Biology
    2. Stem Cells and Regenerative Medicine

    Inducible depletion of adult skeletal muscle stem cells impairs the regeneration of neuromuscular junctions

    Wenxuan Liu et al.
    Skeletal muscle stem cells play important roles in the regeneration of neuromuscular junctions, and so present new targets for therapies to treat neuromuscular decline observed in the context of aging and various neuromuscular diseases.
    1. Cell Biology
    2. Stem Cells and Regenerative Medicine

    Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy

    Qingnian Goh, Douglas P Millay
    Myomaker is activated on muscle stem cells to promote their fusion with myofibers, which is essential for induction of pro-growth signaling pathways and physiological muscle hypertrophy.
    1. Stem Cells and Regenerative Medicine

    Smad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration

    Nicole D Paris et al.
    Ablation of canonical TGFβ signaling in muscle stem cells at any age is detrimental, and not beneficial, to effective skeletal muscle regeneration due to the promotion of premature fate commitment at the expense of progenitor amplification.
    1. Developmental Biology

    SOXF factors regulate murine satellite cell self-renewal and function through inhibition of β-catenin activity

    Sonia Alonso-Martin et al.
    A set of ex vivo and in vivo experiments, including genetic ablation and regeneration studies, identify a key regulatory function of SOXF factors in muscle stem cells in mice.
    1. Cell Biology
    2. Human Biology and Medicine

    Ret function in muscle stem cells points to tyrosine kinase inhibitor therapy for facioscapulohumeral muscular dystrophy

    Louise A Moyle et al.
    Rescue of DUX4-induced muscle pathology by the RET inhibitor Sunitinib reveals the therapeutic potential for treatment of Facioscapulohumeral muscular dystrophy using tyrosine kinase inhibitors.
    1. Human Biology and Medicine

    Stem Cells: Put to the test

    Marites T Woon, Timothy J Kamp
    Personalized heart muscle cells made from stem cells in the laboratory could be used to check an individual’s response to potential new drugs before clinical trials.
    Insight
    Available as:
    • HTML
    • PDF

Refine your results by:

Type
Research categories