252 results found
    1. Chromosomes and Gene Expression

    MCM2–7-dependent cohesin loading during S phase promotes sister-chromatid cohesion

    Ge Zheng et al.
    Systematic analyses of DNA replication machinery components in human cells reveal a requirement of MCM-dependent de novo loading or mobilization of cohesin at replication forks in establishing sister-chromatid cohesion.
    1. Cell Biology
    2. Chromosomes and Gene Expression

    E3 ubiquitin ligase Bre1 couples sister chromatid cohesion establishment to DNA replication in Saccharomyces cerevisiae

    Wei Zhang et al.
    E3 ubiquitin ligase Bre1-induced H2B monoubiquitination is epigenetically important for recruiting replication factor Mcm10 and cohesion establishment factors Ctf4, Ctf18 and Eco1 to early replication origins to establish sister chromatid cohesion.
    1. Structural Biology and Molecular Biophysics
    2. Cell Biology

    Structural evidence for Scc4-dependent localization of cohesin loading

    Stephen M Hinshaw et al.
    Cohesin loading at centromeres depends on a conserved surface cluster of amino-acid residues on the cohesin loading protein, Scc4.
    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology

    Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver

    Bryan J Matthews, David J Waxman
    Certain types of 3D chromatin loops are easy to predict from existing or easily obtainable 2D information, which benefits gene expression studies in tissues/cells/organisms without extensive pre-existing 3D information.
    1. Structural Biology and Molecular Biophysics
    2. Chromosomes and Gene Expression

    CTCF and cohesin regulate chromatin loop stability with distinct dynamics

    Anders S Hansen et al.
    Single-molecule imaging of CTCF and cohesin in live cells suggests that chromatin loops are dynamic structures that frequently form and fall apart.
    1. Cell Biology
    2. Chromosomes and Gene Expression

    Divergent kleisin subunits of cohesin specify mechanisms to tether and release meiotic chromosomes

    Aaron F Severson, Barbara J Meyer
    Mechanisms that tether and release replicated sister chromatids to produce sperm and eggs rely extensively on meiotic cohesin complexes that are endowed with unexpectedly different properties specified by a single interchangeable subunit, the α-kleisin.
    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression

    Cohesion is established during DNA replication utilising chromosome associated cohesin rings as well as those loaded de novo onto nascent DNAs

    Madhusudhan Srinivasan et al.
    Sister chromatid cohesion is established during replication by two independent pathways operating in parallel, one converts chromosomal cohesin into cohesive structures while the other loads cohesin onto nascent DNAs.
    1. Cell Biology
    2. Chromosomes and Gene Expression

    Absolute quantification of cohesin, CTCF and their regulators in human cells

    Johann Holzmann et al.
    Absolute quantification of cohesin, CTCF, NIPBL, WAPL and sororin in HeLa cells implies that some genomic cohesin and CTCF enrichment sites are unoccupied at any one time.
    1. Chromosomes and Gene Expression

    Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity

    Jeffrey M Alexander et al.
    Sox2 transcription is not correlated with spatial proximity of its essential regulatory enhancer in embryonic stem cells, suggesting gene transcription is not limited to periods of direct enhancer-promoter contact.
    1. Chromosomes and Gene Expression

    Cohesin-interacting protein WAPL-1 regulates meiotic chromosome structure and cohesion by antagonizing specific cohesin complexes

    Oliver Crawley et al.
    By specifically antagonizing binding of complexes carrying COH-3/4 kleisins, WAPL-1 regulates chromosome structure and cohesion throughout meiotic prophase.

Refine your results by:

Type
Research categories