Activation of the subthalamic nucleus (STN) pauses or disrupts behavior, while STN inhibition reduces the disruptive effects of surprise, indicating that STN activation is both sufficient and necessary for behavioral inhibition.
Intraoperative human brain recordings during a memory task reveal that when participants inhibit memory formation, the subthalamic nucleus shows higher beta power and beta coherence with areas of the lateral cortex implicated in memory processing.
In mouse models of Huntington's disease, the subthalamic nucleus, which suppresses movements, also exhibits impaired glutamate homeostasis, NMDA receptor-dependent mitochondrial oxidant stress, firing disruption, and 30% neuronal loss.
Single-unit activity consistent with a selective causal role in reactive stopping or switching behaviors is found only in the most ventromedial subregion of the subthalamic nucleus.
Sudden stopping of rhythmic movement is associated with a pronounced increase of 60-90 Hz gamma oscillations in the subthalamic nucleus, which have formerly been regarded as favouring movement.
Patterns of coordinated activity in the basal ganglia predict how much force we will use to grip objects, suggesting that individuals with paralysis may ultimately be able to use these signals to control graded responses in robotic devices.
Action-selection under response-conflict is buttressed by an inhibitory control signal from the basal ganglia that non-selectively suppresses motor excitability.