Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.
1,227 results found
    1. Structural Biology and Molecular Biophysics
    2. Neuroscience

    A novel region in the CaV2.1 α1 subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone

    Matthias Lübbert et al.
    A novel region in the CaV2.1 α1 subunit regulates coupling of synaptic vesicles to CaV2.1 calcium channels, synaptic vesicle release and docking, and the size of the fast and total releasable pools of synaptic vesicles.
    1. Neuroscience

    Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain

    Jake F Watson et al.
    The positioning of AMPA-type glutamate receptors at synapses – a requirement for effective neurotransmission and synaptic plasticity – is orchestrated by their extracellular, N-terminal domain.
    1. Cell Biology
    2. Neuroscience

    Presynaptic morphology and vesicular composition determine vesicle dynamics in mouse central synapses

    Laurent Guillaud et al.
    In central synapses, the mobility and supply of synaptic vesicles are determined by two independent biological factors: the morphological and structural organization of nerve terminals and the molecular signature of vesicles.
    1. Neuroscience

    Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation

    Xiling Li et al.
    Genetic and electrophysiological analyses reveal that the mechanisms orchestrating the induction and expression of homeostatic plasticity are compartmentalized and operate with exquisite specificity on both sides of the synapse.
    1. Cell Biology
    2. Neuroscience

    Active presynaptic ribosomes in the mammalian brain, and altered transmitter release after protein synthesis inhibition

    Matthew S Scarnati et al.
    Local presynaptic protein synthesis occurring at established nerve terminals in the mammalian brain provides a mechanism for rapidly controlling or restoring presynaptic proteins that affect neurotransmitter release and presynaptic efficiency.
    1. Cell Biology
    2. Neuroscience

    Tenectin recruits integrin to stabilize bouton architecture and regulate vesicle release at the Drosophila neuromuscular junction

    Qi Wang et al.
    Characterization of Tnc as a selective integrin ligand at the Drosophila NMJ allows for unprecedented insights into our understanding of extracellular matrix/integrin interactions at synaptic locations and reveals novel, distinct presynaptic and postsynaptic integrin functions.
    1. Neuroscience

    Physiological and pathophysiological control of synaptic GluN2B-NMDA receptors by the C-terminal domain of amyloid precursor protein

    Paula A Pousinha et al.
    The APP intracellular domain (AICD) physiologically regulates synaptic GluN2B-containing NMDA receptor current, a process that could contribute to pathological Alzheimer's disease-related synaptic failure upon increase of AICD levels in adult neurons.
    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression

    Multiple interfaces between a serine recombinase and an enhancer control site-specific DNA inversion

    Meghan M McLean et al.
    The structure of the recombination complex responsible for flagellar antigen switching in Salmonella enterica, and the mechanism that regulates the site-specific DNA inversion reaction, have been determined.
    1. Neuroscience

    Reactive oxygen species regulate activity-dependent neuronal plasticity in Drosophila

    Matthew CW Oswald et al.
    Reactive oxygen species, previously considered damaging agents linked to pathology, are required for normal neuronal plasticity, including adjustment of synaptic terminal size, maintenance of synaptic physiology and adaptive behavioural responses.
    1. Neuroscience

    Distinct modes of endocytotic presynaptic membrane and protein uptake at the calyx of Held terminal of rats and mice

    Yuji Okamoto et al.
    Capacitance measurements and pH imaging reveal distinct modes of uptake for endocytotic presynaptic membrane and proteins.

Refine your results by:

Type
Research categories