672 results found
    1. Structural Biology and Molecular Biophysics

    Complexin inhibits spontaneous release and synchronizes Ca2+-triggered synaptic vesicle fusion by distinct mechanisms

    Ying Lai et al.
    Building on previous work (Diao et al., 2012), we show that the mechanism by which complexin suppresses spontaneous fusion is distinct from the mechanism by which it synchronizes Ca2+-triggered fusion.
    1. Neuroscience

    Nanoscale dynamics of synaptic vesicle trafficking and fusion at the presynaptic active zone

    Thirumalini Vaithianathan et al.
    A combination of tethered diffusion of release-ready synaptic vesicles and vesicle-vesicle fusion supports neurotransmitter release at the presynaptic active zone of sensory synapses.
    1. Structural Biology and Molecular Biophysics
    2. Neuroscience

    A novel region in the CaV2.1 α1 subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone

    Matthias Lübbert et al.
    A novel region in the CaV2.1 α1 subunit regulates coupling of synaptic vesicles to CaV2.1 calcium channels, synaptic vesicle release and docking, and the size of the fast and total releasable pools of synaptic vesicles.
    1. Neuroscience

    Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    Sebastiaan Schotten et al.
    Independent osmotic, genetic and biochemical perturbations modulate neurotransmitter release in a multiplicative manner.
    1. Structural Biology and Molecular Biophysics
    2. Neuroscience

    Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex

    Ucheor B Choi et al.
    Complexin can have two conformations when bound to a ternary SNARE complex, one of which induces a conformational change of the SNARE complex at the C-terminus.
    1. Structural Biology and Molecular Biophysics
    2. Neuroscience

    Re-examining how complexin inhibits neurotransmitter release

    Thorsten Trimbuch et al.
    Challenging a widespread model, biophysical and electrophysiological experiments suggest a new mechanism whereby complexins inhibit neurotransmitter release through electrostatic repulsion between their accessory helix and the membranes.
    1. Structural Biology and Molecular Biophysics
    2. Neuroscience

    Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion

    Jiajie Diao et al.
    A combination of advanced optical imaging and cryogenic electron microscopy has been used to explore membrane fusion in a synthetic system and provide new insights into neurotransmitter release.
    1. Neuroscience
    2. Structural Biology and Molecular Biophysics

    Membrane bridging by Munc13-1 is crucial for neurotransmitter release

    Bradley Quade et al.
    Cryo-electron tomography, reconstitution, and electrophysiological data show that a fundamental function of Munc13-1 is to bridge synaptic vesicles to the presynaptic plasma membrane.
    1. Structural Biology and Molecular Biophysics
    2. Neuroscience

    Mechanistic insights into neurotransmitter release and presynaptic plasticity from the crystal structure of Munc13-1 C1C2BMUN

    Junjie Xu et al.
    The crystal structure of a large C-terminal fragment of Munc13-1 provides a key framework to understand how Munc13-1 mediates neurotransmitter release and presynaptic plasticity.

Refine your results by:

Type
Research categories