75 results found
    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics

    Topoisomerase VI senses and exploits both DNA crossings and bends to facilitate strand passage

    Timothy J Wendorff, James M Berger
    The engagement of DNA crossings is shown to license ATP hydrolysis and DNA cleavage by topoisomerase VI, a finding with mechanistic ramifications for related GHKL ATPases and meiotic recombination machineries.
    1. Cell Biology

    Metaphase chromosome structure is dynamically maintained by condensin I-directed DNA (de)catenation

    Ewa Piskadlo et al.
    Condensin I maintains chromosome organization throughout metaphase by preventing erroneous topoisomerase II-dependent sister chromatid re-entanglements.
    1. Cell Biology
    2. Chromosomes and Gene Expression

    Post-meiotic DNA double-strand breaks occur in Tetrahymena, and require Topoisomerase II and Spo11

    Takahiko Akematsu et al.
    The first genetic compelling evidence for post-meiotic DNA double-strand breaks and its relation to chromatin remodeling in haploid pronuclei is shown.
    1. Biochemistry and Chemical Biology
    2. Cell Biology

    SPRTN is a mammalian DNA-binding metalloprotease that resolves DNA-protein crosslinks

    Jaime Lopez-Mosqueda et al.
    SPRTN is a protease essential for the repair of cytotoxic DNA-protein cross links and this function is defective in patients afflicted with Ruijs-Aalfs syndrome -a segmental progeroid syndrome.
    1. Cell Biology
    2. Chromosomes and Gene Expression

    Meiosis: Stopping chromosomes from breaking bad

    Rima Sandhu, G Valentin Börner
    The scaffolding that holds chromosome pairs together plays a key role in limiting the levels of double-strand breaks.
    Insight
    Available as:
    • HTML
    • PDF
    1. Biochemistry and Chemical Biology
    2. Human Biology and Medicine

    Cancer: How does doxorubicin work?

    Anand G Patel, Scott H Kaufmann
    Insight
    Available as:
    • HTML
    • PDF
    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease

    IRF4 haploinsufficiency in a family with Whipple’s disease

    Antoine Guérin et al.
    Autosomal dominant IRF4 deficiency is the first genetic etiology of Whipple's disease, a very rare chronic condition following a rather common infection by Tropheryma whipplei.
    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology

    Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver

    Bryan J Matthews, David J Waxman
    Certain types of 3D chromatin loops are easy to predict from existing or easily obtainable 2D information, which benefits gene expression studies in tissues/cells/organisms without extensive pre-existing 3D information.
    1. Chromosomes and Gene Expression

    Histone H3G34R mutation causes replication stress, homologous recombination defects and genomic instability in S. pombe

    Rajesh K Yadav et al.
    Mutation of Glycine 34 to Arginine within the N-terminal tail of histone H3 alters post-translational modifications on Lysine 36 and is associated with a delay in replication restart, defective homologous recombination and an increase in genomic instability.
    1. Cell Biology
    2. Chromosomes and Gene Expression

    Polo-like kinase-dependent phosphorylation of the synaptonemal complex protein SYP-4 regulates double-strand break formation through a negative feedback loop.

    Saravanapriah Nadarajan et al.
    PLK-1/2-mediated SYP-4 phosphorylation is dependent on crossover precursor formation, triggering a switch in the dynamic state of the synaptonemal complex that reduces the formation of further double-strand breaks at late meiotic prophase.

Refine your results by:

Type
Research categories