3,136 results found
    1. Neuroscience

    Doc2B acts as a calcium sensor for vesicle priming requiring synaptotagmin-1, Munc13-2 and SNAREs

    Sébastien Houy et al.
    Doc2B functions in two distinct vesicle priming steps; membrane localization occludes upstream Ca2+-dependent priming, whereas Ca2+-binding and interaction with synaptotagmin-1, SNAREs, and Munc13-2 are involved in downstream priming, which makes vesicles readily releasable.
    1. Neuroscience

    Heterodimerization of UNC-13/RIM regulates synaptic vesicle release probability but not priming in C. elegans

    Haowen Liu et al.
    RIM binding UNC-13L C2A domain releases UNC-13L from an autoinhibitory homodimeric complex to become fusion-competent, and regulates probability of synaptic vesicle release in the post-priming process.
    1. Neuroscience

    Rapid regulation of vesicle priming explains synaptic facilitation despite heterogeneous vesicle:Ca2+ channel distances

    Janus RL Kobbersmed et al.
    Heterogeneous distances between vesicles and Ca2+-channels make synapses prone to short-term depression, however, Ca2+-dependent increases in the number of release-ready vesicles supports facilitation even with broadly distributed vesicle:Ca2+-channel distances.
    1. Neuroscience

    A synaptotagmin suppressor screen indicates SNARE binding controls the timing and Ca2+ cooperativity of vesicle fusion

    Zhuo Guan et al.
    A suppressor screen of dominant-negative synaptotagmin-induced lethality in Drosophila identifies key properties of the protein that regulate fusion, including the SNARE interaction surface.
    1. Neuroscience

    Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis

    Kwun Nok M Man et al.
    Munc13 proteins are key determinants of large dense-core vesicle (LDCV)-dependent catecholamine release in chromaffin cells.
    1. Neuroscience

    RIM-BP2 primes synaptic vesicles via recruitment of Munc13-1 at hippocampal mossy fiber synapses

    Marisa M Brockmann et al.
    The active zone scaffold protein RIM-BP2 performs distinct functions in vesicle release at two hippocampal synapses, providing insights on how synapses express diversity in release properties.
    1. Cell Biology
    2. Neuroscience

    UNC-13L, UNC-13S, and Tomosyn form a protein code for fast and slow neurotransmitter release in Caenorhabditis elegans

    Zhitao Hu et al.
    Long and short variants of a protein called UNC-13, assisted by another called Tomosyn, regulate the timing of synaptic vesicle release in C. elegans.
    1. Structural Biology and Molecular Biophysics
    2. Neuroscience

    Functional synergy between the Munc13 C-terminal C1 and C2 domains

    Xiaoxia Liu et al.
    Munc13 C-terminal domains synergize to coordinate synaptic vesicle docking, priming and fusion.
    1. Cell Biology
    2. Neuroscience

    Memory: Can fearlessness come in a tiny package?

    Bryan W Luikart
    A molecule called microRNA-153 helps to prevent rats associating new environments with fear.
    Insight
    Available as:
    • HTML
    • PDF
  1. Meta-Research: How significant are the public dimensions of faculty work in review, promotion and tenure documents?

    Juan P Alperin et al.
    An analysis of review, promotion and tenure documents from 129 US and Canadian universities suggests institutions could better fulfill their public missions by changing how they incentivize the public dimensions of faculty work.

Refine your results by:

Type
Research categories