Underlying dyslipidemia postpartum in women with a recent GDM pregnancy who develop Type 2 diabetes

  1. Mi Lai
  2. Dana Al Rijjal
  3. Hannes L Röst  Is a corresponding author
  4. Feihan F Dai  Is a corresponding author
  5. Erica P Gunderson  Is a corresponding author
  6. Michael B Wheeler  Is a corresponding author
  1. University of Toronto, Canada
  2. Kaiser Permanente Northern California, United States

Abstract

Approximately 35% of women with Gestational Diabetes (GDM) progress to Type2 Diabetes (T2D) within 10 years. However, links between GDM and T2D are not well understood. We used a well-characterised GDM prospective cohort of 1,035 women following up to 8 years postpartum. Lipidomics profiling covering >1000 lipids, was performed on fasting plasma samples from participants 6-9week postpartum (171 incident T2D vs. 179 controls). We discovered 311 lipids positively and 70 lipids negatively associated with T2D risk. The upregulation of glycerolipid metabolism involving triacylglycerol and diacylglycerol biosynthesis suggested activated lipid storage before diabetes onset. In contrast, decreased sphingomyelines, hexosylceramide and lactosylceramide indicated impaired sphingolipid metabolism. Additionally, a lipid signature was identified to effectively predict future diabetes risk. These findings demonstrate an underlying dyslipidemia during the early postpartum in those GDM women who progress to T2D and suggest endogenous lipogenesis may be a driving force for future diabetes onset.

Data availability

Lipidomic data have been deposited in Harvard Dataverse: https://doi.org/10.7910/DVN/KUDDSF.Source data files have been provided for Figures 2, 3 , 4 and 6 as supporting files.

The following data sets were generated
    1. Michael Wheeler
    (2020) SWIFT lipidomics data
    Harvard Dataverse, 10.7910/DVN/KUDDSF.

Article and author information

Author details

  1. Mi Lai

    Department of Physiology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  2. Dana Al Rijjal

    Department of Physiology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  3. Hannes L Röst

    Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
    For correspondence
    hannes.rost@utoronto.ca
    Competing interests
    No competing interests declared.
  4. Feihan F Dai

    Department of Physiology, University of Toronto, Toronto, Canada
    For correspondence
    f.dai@utoronto.ca
    Competing interests
    No competing interests declared.
  5. Erica P Gunderson

    Division of Research, Kaiser Permanente Northern California, Oakland, United States
    For correspondence
    Erica.Gunderson@kp.org
    Competing interests
    Erica P Gunderson, Erica P. Gunderson is affiliated with Kaiser Permanente. EPG has declared a research grant from Janssen Pharmaceuticals Company. EPG has no other financial interests to declare..
  6. Michael B Wheeler

    Physiology, University of Toronto, Toronto, Canada
    For correspondence
    michael.wheeler@utoronto.ca
    Competing interests
    Michael B Wheeler, MBW has declared a research grant from Janssen Pharmaceuticals Company.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7480-7267

Funding

Canadian Institutes of Health Research (FRN 143219)

  • Michael B Wheeler

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01 HD050625)

  • Erica P Gunderson

The National Institute of Digestive, Diabetes and Kidney Disease (R01 DK118409)

  • Erica P Gunderson

Janssen Pharmaceuticals (430086739)

  • Erica P Gunderson
  • Michael B Wheeler

Banting and Best Diabetes Centre, University of Toronto (postdoctoral fellowships)

  • Mi Lai

Ontario Graduate Scholarship (Graduate Student Fellowship)

  • Dana Al Rijjal

Banting and Best Diabetes Centre, University of Toronto (Graduate Student Fellowship)

  • Dana Al Rijjal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ralph DeBerardinis, UT Southwestern Medical Center, United States

Ethics

Human subjects: The study design and all procedures were approved by the Kaiser Permanente Northern California Institutional Review Board (protocol numbers #CN-04EGund-03-H and #1279812-10) and Office of Research Ethics at University of Toronto (protocol number #38188). All participants gave written informed consent before taking part in the research exams.

Version history

  1. Received: May 21, 2020
  2. Accepted: July 18, 2020
  3. Accepted Manuscript published: August 4, 2020 (version 1)
  4. Version of Record published: August 10, 2020 (version 2)

Copyright

© 2020, Lai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,282
    views
  • 218
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mi Lai
  2. Dana Al Rijjal
  3. Hannes L Röst
  4. Feihan F Dai
  5. Erica P Gunderson
  6. Michael B Wheeler
(2020)
Underlying dyslipidemia postpartum in women with a recent GDM pregnancy who develop Type 2 diabetes
eLife 9:e59153.
https://doi.org/10.7554/eLife.59153

Share this article

https://doi.org/10.7554/eLife.59153

Further reading

    1. Medicine
    2. Neuroscience
    Matthew F Wipperman, Allen Z Lin ... Olivier Harari
    Tools and Resources

    Gait is impaired in musculoskeletal conditions, such as knee arthropathy. Gait analysis is used in clinical practice to inform diagnosis and to monitor disease progression or intervention response. However, clinical gait analysis relies on subjective visual observation of walking, as objective gait analysis has not been possible within clinical settings due to the expensive equipment, large-scale facilities, and highly trained staff required. Relatively low-cost wearable digital insoles may offer a solution to these challenges. In this work, we demonstrate how a digital insole measuring osteoarthritis-specific gait signatures yields similar results to the clinical gait-lab standard. To achieve this, we constructed a machine learning model, trained on force plate data collected in participants with knee arthropathy and controls. This model was highly predictive of force plate data from a validation set (area under the receiver operating characteristics curve [auROC] = 0.86; area under the precision-recall curve [auPR] = 0.90) and of a separate, independent digital insole dataset containing control and knee osteoarthritis subjects (auROC = 0.83; auPR = 0.86). After showing that digital insole derived gait characteristics are comparable to traditional gait measurements, we next showed that a single stride of raw sensor time series data could be accurately assigned to each subject, highlighting that individuals using digital insoles can be identified by their gait characteristics. This work provides a framework for a promising alternative to traditional clinical gait analysis methods, adds to the growing body of knowledge regarding wearable technology analytical pipelines, and supports clinical development of at-home gait assessments, with the potential to improve the ease, frequency, and depth of patient monitoring.

    1. Medicine
    Anika Shimonty, Fabrizio Pin ... Lynda F Bonewald
    Research Article

    Irisin, released from exercised muscle, has been shown to have beneficial effects on numerous tissues but its effects on bone are unclear. We found significant sex and genotype differences in bone from wildtype (WT) mice compared to mice lacking Fndc5 (knockout [KO]), with and without calcium deficiency. Despite their bone being indistinguishable from WT females, KO female mice were partially protected from osteocytic osteolysis and osteoclastic bone resorption when allowed to lactate or when placed on a low-calcium diet. Male KO mice have more but weaker bone compared to WT males, and when challenged with a low-calcium diet lost more bone than WT males. To begin to understand responsible molecular mechanisms, osteocyte transcriptomics was performed. Osteocytes from WT females had greater expression of genes associated with osteocytic osteolysis and osteoclastic bone resorption compared to WT males which had greater expression of genes associated with steroid and fatty acid metabolism. Few differences were observed between female KO and WT osteocytes, but with a low-calcium diet, the KO females had lower expression of genes responsible for osteocytic osteolysis and osteoclastic resorption than the WT females. Male KO osteocytes had lower expression of genes associated with steroid and fatty acid metabolism, but higher expression of genes associated with bone resorption compared to male WT. In conclusion, irisin plays a critical role in the development of the male but not the female skeleton and protects male but not female bone from calcium deficiency. We propose irisin ensures the survival of offspring by targeting the osteocyte to provide calcium in lactating females, a novel function for this myokine.