Cryo-EM single particle analysis with the Volta phase plate

  1. Radostin Danev  Is a corresponding author
  2. Wolfgang Baumeister
  1. Max Planck Institute of Biochemistry, Germany

Abstract

We present a method for in-focus data acquisition with a phase plate that enables near-atomic resolution single particle reconstructions. Accurate focusing is the determining factor for obtaining high quality data. A double-area focusing strategy was implemented in order to achieve the required precision. With this approach we obtained a 3.2 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome. The phase plate matches or slightly exceeds the performance of the conventional defocus approach. Spherical aberration becomes a limiting factor for achieving resolutions below 3 Å with in-focus phase plate images. The phase plate could enable single particle analysis of challenging samples in terms of small size, heterogeneity and flexibility that are difficult to solve by the conventional defocus approach.

Article and author information

Author details

  1. Radostin Danev

    Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    For correspondence
    danev@biochem.mpg.de
    Competing interests
    Radostin Danev, co-inventor in US patent US9129774 B2 Method of using a phase plate in a transmission electron microscope"".
  2. Wolfgang Baumeister

    Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    Wolfgang Baumeister, on the Scientific Advisory Board of FEI Company.

Copyright

© 2016, Danev & Baumeister

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 14,309
    views
  • 2,995
    downloads
  • 145
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Radostin Danev
  2. Wolfgang Baumeister
(2016)
Cryo-EM single particle analysis with the Volta phase plate
eLife 5:e13046.
https://doi.org/10.7554/eLife.13046

Share this article

https://doi.org/10.7554/eLife.13046

Further reading

    1. Structural Biology and Molecular Biophysics
    Robert M Glaeser
    Insight

    A new advance in electron microscopy can reveal highly-detailed structures of protein complexes.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Douwe Schulte, Marta Šiborová ... Joost Snijder
    Research Article

    Antibodies are a major component of adaptive immunity against invading pathogens. Here, we explore possibilities for an analytical approach to characterize the antigen-specific antibody repertoire directly from the secreted proteins in convalescent serum. This approach aims to perform simultaneous antibody sequencing and epitope mapping using a combination of single particle cryo-electron microscopy (cryoEM) and bottom-up proteomics techniques based on mass spectrometry (LC-MS/MS). We evaluate the performance of the deep-learning tool ModelAngelo in determining de novo antibody sequences directly from reconstructed 3D volumes of antibody-antigen complexes. We demonstrate that while map quality is a critical bottleneck, it is possible to sequence antibody variable domains from cryoEM reconstructions with accuracies of up to 80–90%. While the rate of errors exceeds the typical levels of somatic hypermutation, we show that the ModelAngelo-derived sequences can be used to assign the used V-genes. This provides a functional guide to assemble de novo peptides from LC-MS/MS data more accurately and improves the tolerance to a background of polyclonal antibody sequences. Following this proof-of-principle, we discuss the feasibility and future directions of this approach to characterize antigen-specific antibody repertoires.