Electromyography: Accessing populations of motor units

A new device improves the way scientists can record the activity of motor units in a wide range of animals and settings.
  1. Eric A Kirk
  2. Britton A Sauerbrei  Is a corresponding author
  1. Department of Neurosciences, School of Medicine, Case Western Reserve University, United States

Active, purposeful movement is a defining feature of animal life and requires precise coordination between the nervous system and muscles. Specialized nerve cells, known as motoneurons, constitute the final output of the central nervous system, and are responsible for activating muscle. Each motoneuron can innervate multiple muscle fibers, and a single electrical impulse in the motoneuron induces a corresponding impulse in these fibers, causing them to contract. Together, a single motoneuron and the muscle fibers it innervates are referred to as a motor unit (Sherrington, 1925).

Recording the electrical activity of individual motor units during voluntary contractions became possible in the 1920s with the development of needle electrodes that could be inserted into muscles. This approach has revealed many fundamental properties of the neuromuscular system by allowing indirect yet accurate and relatively non-invasive measurement of impulse times in spinal motoneurons (Adrian and Bronk, 1929; Farina and Gandevia, 2023). But it also has many limitations, such as needle electrodes getting displaced during movement and only being able to record a small number of motor units at a time. In addition, it is often challenging to assign a given impulse to a specific unit using this method because an individual electrode may detect impulses with similar electrical profiles from multiple motor units.

However, scientists can bypass some of these limitations. For example, it is possible to reliably isolate the activity of multiple individual units during movement by using a large number of electrodes organized into an array, as each motor unit will produce a unique pattern of waveforms across the electrodes. In recent decades, new techniques have been developed to record from larger numbers of motor units, including high-density electrode arrays that can be implanted into muscle, and arrays that record relatively smaller signals at many sites across the surface of the skin (Muceli et al., 2022; Negro et al., 2016).

While each of these methods has distinct strengths and limitations, there remains a need for a widely available device that is capable of the following: providing stable recordings during natural movements, when muscles rapidly lengthen, shorten, and twist; being used in a broad range of experimental preparations, muscles, and animal groups; recording many motor units simultaneously; and working for weeks or even months after implantation. Now, in eLife, Samuel Sober and colleagues at various institutions in the United States, Canada, Portugal and Germany – including Bryce Chung (Emory University) and Muneeb Zia (Georgia Institute of Technology) as joint first authors – report how they have successfully developed versatile devices called Myomatrix arrays that meet these criteria (Chung et al., 2023).

The instruments consist of four long, flexible threads that each terminate in eight electrodes (Zia et al., 2020; Lu et al., 2022). These threads can either be inserted directly into a muscle or attached to the overlying connective tissue, enabling the electrodes to move with the muscle and maintain stable recordings. Chung et al. first tested the device in freely behaving mice, showing that it provided better recordings of the activity of individual motor units than traditional wire electrodes. The team was then able to demonstrate that Myomatrix arrays could record well-isolated motor units across a wide range of muscle morphologies, species and behaviors: this included the vocal and respiratory muscles of songbirds as they breathed, the hip muscles of bullfrogs during reflex contractions, and the abdominal muscles of hawkmoth larvae undergoing a protocol commonly used in locomotion studies.

Next, Chung et al. showed that their approach could simultaneously provide stable recordings from multiple motor units, including for large muscles and during active movement (for example, for the forelimb muscles of rhesus macaques performing a reaching task). Finally, they successfully confirmed that Myomatrix arrays could be used for long-term recordings, including over at least two months after implantation in mice. Overall, this study presents a compelling validation of a novel device for high-quality, large-scale, long-term motor unit recordings in a broad range of applications.

Investigating how the nervous system controls movement often requires large-scale recordings from the motor unit population. For example, it is still unclear to what extent the brain has the flexibility to voluntarily recruit individual motor units. Under typical experimental conditions, motor units are normally activated in a fixed order as force increases, from the smallest motoneurons to the largest (Henneman et al., 1965). Even with significant training and effort, human subjects have difficulty reversing this recruitment order voluntarily, and activating larger units while suppressing smaller ones (Bräcklein et al., 2022). However, recent work in nonhuman primates suggests that the motor cortex may be capable of independently controlling individual motor units in certain contexts (Marshall et al., 2022). Recent advances in electrode design, such as the Myomatrix arrays described by Chung et al., are expected to accelerate our understanding of flexible recruitment and other major research questions in the coming years.

References

    1. Sherrington CS
    (1925)
    Remarks on some aspects of reflex inhibition
    Proceedings of the Royal Society of London. Series B. 97:519–545.

Article and author information

Author details

  1. Eric A Kirk

    Eric A Kirk is in the School of Medicine, Case Western Reserve University, Cleveland, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1777-9511
  2. Britton A Sauerbrei

    Britton A Sauerbrei is in the School of Medicine, Case Western Reserve University, Cleveland, United States

    For correspondence
    bxs561@case.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3386-3243

Publication history

  1. Version of Record published: January 4, 2024 (version 1)

Copyright

© 2024, Kirk and Sauerbrei

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 906
    views
  • 76
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric A Kirk
  2. Britton A Sauerbrei
(2024)
Electromyography: Accessing populations of motor units
eLife 13:e94764.
https://doi.org/10.7554/eLife.94764
  1. Further reading

Further reading

    1. Neuroscience
    Amirhossein Farzmahdi, Wilbert Zarco ... Tal Golan
    Research Article Updated

    Primates can recognize objects despite 3D geometric variations such as in-depth rotations. The computational mechanisms that give rise to such invariances are yet to be fully understood. A curious case of partial invariance occurs in the macaque face-patch AL and in fully connected layers of deep convolutional networks in which neurons respond similarly to mirror-symmetric views (e.g. left and right profiles). Why does this tuning develop? Here, we propose a simple learning-driven explanation for mirror-symmetric viewpoint tuning. We show that mirror-symmetric viewpoint tuning for faces emerges in the fully connected layers of convolutional deep neural networks trained on object recognition tasks, even when the training dataset does not include faces. First, using 3D objects rendered from multiple views as test stimuli, we demonstrate that mirror-symmetric viewpoint tuning in convolutional neural network models is not unique to faces: it emerges for multiple object categories with bilateral symmetry. Second, we show why this invariance emerges in the models. Learning to discriminate among bilaterally symmetric object categories induces reflection-equivariant intermediate representations. AL-like mirror-symmetric tuning is achieved when such equivariant responses are spatially pooled by downstream units with sufficiently large receptive fields. These results explain how mirror-symmetric viewpoint tuning can emerge in neural networks, providing a theory of how they might emerge in the primate brain. Our theory predicts that mirror-symmetric viewpoint tuning can emerge as a consequence of exposure to bilaterally symmetric objects beyond the category of faces, and that it can generalize beyond previously experienced object categories.

    1. Neuroscience
    Emma D Spikol, Ji Cheng ... Marnie E Halpern
    Research Article

    The nucleus incertus (NI), a conserved hindbrain structure implicated in the stress response, arousal, and memory, is a major site for production of the neuropeptide relaxin-3. On the basis of goosecoid homeobox 2 (gsc2) expression, we identified a neuronal cluster that lies adjacent to relaxin 3a (rln3a) neurons in the zebrafish analogue of the NI. To delineate the characteristics of the gsc2 and rln3a NI neurons, we used CRISPR/Cas9 targeted integration to drive gene expression specifically in each neuronal group, and found that they differ in their efferent and afferent connectivity, spontaneous activity, and functional properties. gsc2 and rln3a NI neurons have widely divergent projection patterns and innervate distinct subregions of the midbrain interpeduncular nucleus (IPN). Whereas gsc2 neurons are activated more robustly by electric shock, rln3a neurons exhibit spontaneous fluctuations in calcium signaling and regulate locomotor activity. Our findings define heterogeneous neurons in the NI and provide new tools to probe its diverse functions.