Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits

  1. Balazs B Ujfalussy  Is a corresponding author
  2. Judit K Makara
  3. Tiago Branco
  4. Máté Lengyel
  1. University of Cambridge, United Kingdom
  2. Institute of Experimental Medicine, Hungary
  3. MRC Laboratory of Molecular Biology, United Kingdom

Abstract

Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalises how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems-level properties of cortical circuits.

Article and author information

Author details

  1. Balazs B Ujfalussy

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    balazs.ujfalussy@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Judit K Makara

    Lendület Laboratory of Neuronal Signaling, Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  3. Tiago Branco

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Máté Lengyel

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Hippocampal experiments were conducted according to methods approved by the Janelia Farm Institutional Animal Care and Use Committee and 26 the Animal Care and Use Committee (ACUC) of the Institute of Experimental Medicine, Hungarian Academy of 27 Sciences, and in accordance with 86/609/EEC/2 and DIRECTIVE 2010/63/EU Directives of the EU. Neocortical experiments were performed in strict accordance with guidelines of the Wolfson Institute for Biomedical Research and with the national guidelines.

Copyright

© 2015, Ujfalussy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,009
    views
  • 860
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Balazs B Ujfalussy
  2. Judit K Makara
  3. Tiago Branco
  4. Máté Lengyel
(2015)
Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits
eLife 4:e10056.
https://doi.org/10.7554/eLife.10056

Share this article

https://doi.org/10.7554/eLife.10056

Further reading

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.