Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis

  1. Yedidyah Dordek
  2. Daniel Soudry
  3. Ron Meir
  4. Dori Derdikman  Is a corresponding author
  1. Technion - Israel Institute of Technology, Israel
  2. Columbia University, United States
  3. Technion - Israel Institute Of technology, Israel

Abstract

Many recent models study the downstream projection from grid cells to place cells, while recent data has pointed out the importance of the feedback projection. We thus asked how grid cells are affected by the nature of the input from the place cells.We propose a single-layer neural network with feedforward weights connecting place-like input cells to grid cell outputs. Place-to-grid weights were learned via a generalized Hebbian rule. The architecture of this network highly resembles neural networks used to perform Principal Component Analysis (PCA). Both numerical results and analytic considerations indicate that if the components of the feedforward neural network were non-negative, the output converged to a hexagonal lattice. Without the non-negativity constraint the output converged to a square lattice. Consistent with experiments, grid spacing ratio between the first two consecutive modules was ~1.4. Our results express a possible linkage between place cell to grid cell interactions and PCA.

Article and author information

Author details

  1. Yedidyah Dordek

    Faculty of Electrical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Soudry

    Department of Statistics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ron Meir

    Faculty of Electrical Engineering, Technion - Israel Institute Of technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Dori Derdikman

    Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
    For correspondence
    derdik@technion.ac.il
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Dordek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,505
    views
  • 1,404
    downloads
  • 129
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yedidyah Dordek
  2. Daniel Soudry
  3. Ron Meir
  4. Dori Derdikman
(2016)
Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis
eLife 5:e10094.
https://doi.org/10.7554/eLife.10094

Share this article

https://doi.org/10.7554/eLife.10094

Further reading

    1. Neuroscience
    Frederick Federer, Justin Balsor ... Alessandra Angelucci
    Research Article

    In the mammalian neocortex, inhibition is important for dynamically balancing excitation and shaping the response properties of cells and circuits. The various computational functions of inhibition are thought to be mediated by different inhibitory neuron types, of which a large diversity exists in several species. Current understanding of the function and connectivity of distinct inhibitory neuron types has mainly derived from studies in transgenic mice. However, it is unknown whether knowledge gained from mouse studies applies to the non-human primate, the model system closest to humans. The lack of viral tools to selectively access inhibitory neuron types has been a major impediment to studying their function in the primate. Here, we have thoroughly validated and characterized several recently developed viral vectors designed to restrict transgene expression to GABAergic cells or their parvalbumin (PV) subtype, and identified two types that show high specificity and efficiency in marmoset V1. We show that in marmoset V1, AAV-h56D induces transgene expression in GABAergic cells with up to 91–94% specificity and 79% efficiency, but this depends on viral serotype and cortical layer. AAV-PHP.eB-S5E2 induces transgene expression in PV cells across all cortical layers with up to 98% specificity and 86–90% efficiency, depending on layer. Thus, these viral vectors are promising tools for studying GABA and PV cell function and connectivity in the primate cortex.

    1. Neuroscience
    Audrey T Medeiros, Scott J Gratz ... Kate M O'Connor-Giles
    Research Article

    Synaptic heterogeneity is a hallmark of nervous systems that enables complex and adaptable communication in neural circuits. To understand circuit function, it is thus critical to determine the factors that contribute to the functional diversity of synapses. We investigated the contributions of voltage-gated calcium channel (VGCC) abundance, spatial organization, and subunit composition to synapse diversity among and between synapses formed by two closely related Drosophila glutamatergic motor neurons with distinct neurotransmitter release probabilities (Pr). Surprisingly, VGCC levels are highly predictive of heterogeneous Pr among individual synapses of either low- or high-Pr inputs, but not between inputs. We find that the same number of VGCCs are more densely organized at high-Pr synapses, consistent with tighter VGCC-synaptic vesicle coupling. We generated endogenously tagged lines to investigate VGCC subunits in vivo and found that the α2δ–3 subunit Straightjacket along with the CAST/ELKS active zone (AZ) protein Bruchpilot, both key regulators of VGCCs, are less abundant at high-Pr inputs, yet positively correlate with Pr among synapses formed by either input. Consistently, both Straightjacket and Bruchpilot levels are dynamically increased across AZs of both inputs when neurotransmitter release is potentiated to maintain stable communication following glutamate receptor inhibition. Together, these findings suggest a model in which VGCC and AZ protein abundance intersects with input-specific spatial and molecular organization to shape the functional diversity of synapses.