Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis

  1. Candice L Wike
  2. Hillary K Graves
  3. Reva Hawkins
  4. Matthew D Gibson
  5. Michelle B Ferdinand
  6. Tao Zhang
  7. Zhihong Chen
  8. Damien F Hudson
  9. Jennifer J Ottesen
  10. Michael G Poirier
  11. Jill Schumacher
  12. Jessica K Tyler  Is a corresponding author
  1. University of Texas MD Anderson Cancer Center, United States
  2. The Ohio State University, United States
  3. Royal Children's Hospital, Australia
  4. Ohio State University, United States
  5. University of Texas MD Anderson cancer center, United States
  6. Weill Cornell Medicine, United States

Abstract

Phosphorylation of histone H3 threonine 118 (H3 T118ph) weakens histone DNA-contacts, disrupting the nucleosome structure. We show that Aurora-A mediated H3 T118ph occurs at pericentromeres and chromosome arms during prophase and is lost upon chromosome alignment. Expression of H3 T118E or H3 T118I (a SIN mutation that bypasses the need for the ATP-dependent nucleosome remodeler SWI/SNF) leads to mitotic problems including defects in spindle attachment, delayed cytokinesis, reduced chromatin packaging, cohesion loss, cohesin and condensin I loss in human cells. In agreement, overexpression of Aurora-A leads to increased H3 T118ph levels, causing cohesion loss, and reduced levels of cohesin and condensin I on chromatin. Normal levels of H3 T118ph are important because it is required for development in fruit flies. We propose that H3 T118ph alters the chromatin structure during specific phases of mitosis to promote timely condensin I and cohesin disassociation, which is essential for effective chromosome segregation.

Article and author information

Author details

  1. Candice L Wike

    Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  2. Hillary K Graves

    Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  3. Reva Hawkins

    Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  4. Matthew D Gibson

    Department of Physics, The Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  5. Michelle B Ferdinand

    Department of Chemistry and Biochemistry, The Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  6. Tao Zhang

    Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
    Competing interests
    No competing interests declared.
  7. Zhihong Chen

    Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  8. Damien F Hudson

    Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
    Competing interests
    No competing interests declared.
  9. Jennifer J Ottesen

    Department of Chemistry and Biochemistry, The Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  10. Michael G Poirier

    Department of Physics, Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  11. Jill Schumacher

    Department of Genetics, University of Texas MD Anderson cancer center, Houston, United States
    Competing interests
    No competing interests declared.
  12. Jessica K Tyler

    Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
    For correspondence
    jet2021@med.cornell.edu
    Competing interests
    Jessica K Tyler, Reviewing editor, eLife.

Reviewing Editor

  1. Peter Verrijzer, Erasmus University Medical Center, Netherlands

Version history

  1. Received: September 9, 2015
  2. Accepted: February 15, 2016
  3. Accepted Manuscript published: February 16, 2016 (version 1)
  4. Version of Record published: March 9, 2016 (version 2)

Copyright

© 2016, Wike et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,099
    Page views
  • 870
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Candice L Wike
  2. Hillary K Graves
  3. Reva Hawkins
  4. Matthew D Gibson
  5. Michelle B Ferdinand
  6. Tao Zhang
  7. Zhihong Chen
  8. Damien F Hudson
  9. Jennifer J Ottesen
  10. Michael G Poirier
  11. Jill Schumacher
  12. Jessica K Tyler
(2016)
Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis
eLife 5:e11402.
https://doi.org/10.7554/eLife.11402

Share this article

https://doi.org/10.7554/eLife.11402

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.

    1. Chromosomes and Gene Expression
    Signe Penner-Goeke, Elisabeth B Binder
    Insight

    A technique called mSTARR-seq sheds light on how DNA methylation may shape responses to external stimuli by altering the activity of sequences that control gene expression.