The Apelin receptor enhances Nodal/TGFβ signaling to ensure proper cardiac development

  1. Ashish R Deshwar
  2. Serene C Chng
  3. Lena Ho
  4. Bruno Reversade
  5. Ian C Scott  Is a corresponding author
  1. The Hospital for Sick Children, Canada
  2. A*STAR, Singapore

Abstract

The Apelin receptor (Aplnr) is essential for heart development, controlling the early migration of cardiac progenitors. Here we demonstrate that in zebrafish Aplnr modulates Nodal/TGFβ signaling, a key pathway essential for mesendoderm induction and migration. Loss of Aplnr function leads to a reduction in Nodal target gene expression whereas activation of Aplnr by a non-peptide agonist increases the expression of these same targets. Furthermore, loss of Aplnr results in a delay in the expression of the cardiogenic transcription factors mespaa/ab. Elevating Nodal levels in aplnra/b morphant and double mutant embryos is sufficient to rescue cardiac differentiation defects. We demonstrate that loss of Aplnr attenuates the activity of a point source of Nodal ligands Squint and Cyclops in a non-cell autonomous manner. Our results favour a model in which Aplnr is required to fine-tune Nodal output, acting as a specific rheostat for the Nodal/TGFβ pathway during the earliest stages of cardiogenesis.

Article and author information

Author details

  1. Ashish R Deshwar

    Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Serene C Chng

    Institute of Medical Biology, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Lena Ho

    Institute of Medical Biology, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Bruno Reversade

    Institute of Medical Biology, A*STAR, Sinagapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Ian C Scott

    Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
    For correspondence
    ian.scott@sickkids.ca
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Zebrafish were housed and handled as per Canadian Council on Animal Care and Hospital for Sick Children Laboratory Animal Services (LAS) guidelines under LAS protocol number 33584.

Copyright

© 2016, Deshwar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,600
    views
  • 664
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ashish R Deshwar
  2. Serene C Chng
  3. Lena Ho
  4. Bruno Reversade
  5. Ian C Scott
(2016)
The Apelin receptor enhances Nodal/TGFβ signaling to ensure proper cardiac development
eLife 5:e13758.
https://doi.org/10.7554/eLife.13758

Share this article

https://doi.org/10.7554/eLife.13758

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Nathan D Harry, Christina Zakas
    Research Article

    New developmental programs can evolve through adaptive changes to gene expression. The annelid Streblospio benedicti has a developmental dimorphism, which provides a unique intraspecific framework for understanding the earliest genetic changes that take place during developmental divergence. Using comparative RNAseq through ontogeny, we find that only a small proportion of genes are differentially expressed at any time, despite major differences in larval development and life history. These genes shift expression profiles across morphs by either turning off any expression in one morph or changing the timing or amount of gene expression. We directly connect the contributions of these mechanisms to differences in developmental processes. We examine F1 offspring – using reciprocal crosses – to determine maternal mRNA inheritance and the regulatory architecture of gene expression. These results highlight the importance of both novel gene expression and heterochronic shifts in developmental evolution, as well as the trans-acting regulatory factors in initiating divergence.

    1. Cell Biology
    2. Developmental Biology
    Deepak Adhikari, John Carroll
    Insight

    The formation of large endolysosomal structures in unfertilized eggs ensures that lysosomes remain dormant before fertilization, and then shift into clean-up mode after the egg-to-embryo transition.