An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases

  1. Jeffrey I Boucher
  2. Joseph R Jacobowitz
  3. Brian C Beckett
  4. Scott Classen
  5. Douglas L Theobald  Is a corresponding author
  1. Brandeis University, United States
  2. Lawrence Berkeley National Laboratory, United States

Abstract

Malate and lactate dehydrogenases (MDH and LDH) are homologous, core metabolic enzymes that share a fold and catalytic mechanism yet possess strict specificity for their substrates. In the Apicomplexa, convergent evolution of an unusual LDH from MDH resulted in a difference in substrate preference exceeding 12 orders of magnitude. The molecular and evolutionary mechanisms responsible for this extraordinary functional shift are currently unknown. Using ancestral sequence reconstruction, we find that the evolution of pyruvate specificity in apicomplexan LDHs arose through a classic neofunctionalization mechanism characterized by long-range epistasis, a promiscuous intermediate, and relatively few gain-of-function mutations of large effect. Residues far from the active site determine specificity, as shown by the crystal structures of three ancestral proteins that bracket the key gene duplication event. This work provides an unprecedented atomic-resolution view of evolutionary trajectories resulting in the de novo creation of a nascent enzymatic function.

Article and author information

Author details

  1. Jeffrey I Boucher

    Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Joseph R Jacobowitz

    Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Brian C Beckett

    Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Scott Classen

    Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Douglas L Theobald

    Brandeis University, Waltham, United States
    For correspondence
    dtheobald@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Michael Levitt, Stanford University, United States

Version history

  1. Received: January 19, 2014
  2. Accepted: June 23, 2014
  3. Accepted Manuscript published: June 25, 2014 (version 1)
  4. Version of Record published: July 29, 2014 (version 2)

Copyright

© 2014, Boucher et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,605
    views
  • 517
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeffrey I Boucher
  2. Joseph R Jacobowitz
  3. Brian C Beckett
  4. Scott Classen
  5. Douglas L Theobald
(2014)
An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases
eLife 3:e02304.
https://doi.org/10.7554/eLife.02304

Share this article

https://doi.org/10.7554/eLife.02304

Further reading

    1. Structural Biology and Molecular Biophysics
    Christian Galicia, Giambattista Guaitoli ... Wim Versées
    Research Article

    Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson’s disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.