MicroRNAs down-regulate homologous recombination in the G1 phase of cycling cells to maintain genomic stability

  1. Young Eun Choi
  2. Yunfeng Pan
  3. Eunmi Park
  4. Panagiotis Konstantinopoulos
  5. Subhajyoti De
  6. Alan D'Andrea
  7. Dipanjan Chowdhury  Is a corresponding author
  1. Dana-Farber Cancer Institute, Harvard Medical School, United States
  2. University of Colorado School of Medicine, United States

Abstract

Homologous recombination (HR) mediated repair of DNA double-strand break (DSB)s is restricted to the post-replicative phases of the cell cycle. Initiation of HR in the G1 phase blocks non-homologous end joining (NHEJ) impairing DSB repair. Completion of HR in G1 cells can lead to the loss-of-heterozygosity (LOH) which is potentially carcinogenic. We conducted a gain-of-function screen to identify miRNAs that regulate HR-mediated DSB repair, and of these miRNAs, miR-1255b, miR-148b*and miR-193b* specifically suppress the HR-pathway in the G1 phase. These miRNAs target the transcripts of HR factors, BRCA1, BRCA2 and RAD51 and inhibiting miR-1255b, miR-148b*and miR-193b* increases expression of BRCA1/BRCA2/RAD51 specifically in the G1-phase leading to impaired DSB repair. Depletion of CtIP, a BRCA1-associated DNA end resection protein, rescues this phenotype. Furthermore, deletion of miR-1255b, miR-148b*and miR-193b* in independent cohorts of ovarian tumors correlates with significant increase in LOH events/ chromosomal aberrations and BRCA1 expression.

Article and author information

Author details

  1. Young Eun Choi

    Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yunfeng Pan

    Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eunmi Park

    Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Panagiotis Konstantinopoulos

    Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Subhajyoti De

    University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alan D'Andrea

    Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Dipanjan Chowdhury

    Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    For correspondence
    dipanjan_chowdhury@dfci.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Timothy Nilsen, Case Western Reserve University, United States

Ethics

Human subjects: The clinical data from patients was obtained via published sources which include the Cancer Genome Atlas

Version history

  1. Received: February 2, 2014
  2. Accepted: April 29, 2014
  3. Accepted Manuscript published: April 30, 2014 (version 1)
  4. Version of Record published: May 27, 2014 (version 2)

Copyright

© 2014, Choi et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,693
    views
  • 338
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Young Eun Choi
  2. Yunfeng Pan
  3. Eunmi Park
  4. Panagiotis Konstantinopoulos
  5. Subhajyoti De
  6. Alan D'Andrea
  7. Dipanjan Chowdhury
(2014)
MicroRNAs down-regulate homologous recombination in the G1 phase of cycling cells to maintain genomic stability
eLife 3:e02445.
https://doi.org/10.7554/eLife.02445

Share this article

https://doi.org/10.7554/eLife.02445

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.